β-Ga2O3 Junctionless FET with an Ω Shape 4H-SiC Region in Accumulation Mode

Silicon ◽  
2021 ◽  
Author(s):  
Dariush Madadi
Keyword(s):  
2021 ◽  
Vol 127 (3) ◽  
Author(s):  
Avashesh Dubey ◽  
Rakhi Narang ◽  
Manoj Saxena ◽  
Mridula Gupta

2017 ◽  
Vol 17 (13) ◽  
pp. 8101-8128 ◽  
Author(s):  
Eyal Freud ◽  
Radovan Krejci ◽  
Peter Tunved ◽  
Richard Leaitch ◽  
Quynh T. Nguyen ◽  
...  

Abstract. The Arctic environment has an amplified response to global climatic change. It is sensitive to human activities that mostly take place elsewhere. For this study, a multi-year set of observed aerosol number size distributions in the diameter range of 10 to 500 nm from five sites around the Arctic Ocean (Alert, Villum Research Station – Station Nord, Zeppelin, Tiksi and Barrow) was assembled and analysed.A cluster analysis of the aerosol number size distributions revealed four distinct distributions. Together with Lagrangian air parcel back-trajectories, they were used to link the observed aerosol number size distributions with a variety of transport regimes. This analysis yields insight into aerosol dynamics, transport and removal processes, on both an intra- and an inter-monthly scale. For instance, the relative occurrence of aerosol number size distributions that indicate new particle formation (NPF) event is near zero during the dark months, increases gradually to  ∼ 40 % from spring to summer, and then collapses in autumn. Also, the likelihood of Arctic haze aerosols is minimal in summer and peaks in April at all sites.The residence time of accumulation-mode particles in the Arctic troposphere is typically long enough to allow tracking them back to their source regions. Air flow that passes at low altitude over central Siberia and western Russia is associated with relatively high concentrations of accumulation-mode particles (Nacc) at all five sites – often above 150 cm−3. There are also indications of air descending into the Arctic boundary layer after transport from lower latitudes.The analysis of the back-trajectories together with the meteorological fields along them indicates that the main driver of the Arctic annual cycle of Nacc, on the larger scale, is when atmospheric transport covers the source regions for these particles in the 10-day period preceding the observations in the Arctic. The scavenging of these particles by precipitation is shown to be important on a regional scale and it is most active in summer. Cloud processing is an additional factor that enhances the Nacc annual cycle.There are some consistent differences between the sites that are beyond the year-to-year variability. They are the result of differences in the proximity to the aerosol source regions and to the Arctic Ocean sea-ice edge, as well as in the exposure to free-tropospheric air and in precipitation patterns – to mention a few. Hence, for most purposes, aerosol observations from a single Arctic site cannot represent the entire Arctic region. Therefore, the results presented here are a powerful observational benchmark for evaluation of detailed climate and air chemistry modelling studies of aerosols throughout the vast Arctic region.


2007 ◽  
Vol 7 (8) ◽  
pp. 2073-2090 ◽  
Author(s):  
D. V. Spracklen ◽  
K. J. Pringle ◽  
K. S. Carslaw ◽  
G. W. Mann ◽  
P. Manktelow ◽  
...  

Abstract. A statistical synthesis of marine aerosol measurements from experiments in four different oceans is used to evaluate a global aerosol microphysics model (GLOMAP). We compare the model against observed size resolved particle concentrations, probability distributions, and the temporal persistence of different size particles. We attempt to explain the observed sub-micrometre size distributions in terms of sulfate and sea spray and quantify the possible contributions of anthropogenic sulfate and carbonaceous material to the number and mass distribution. The model predicts a bimodal size distribution that agrees well with observations as a grand average over all regions, but there are large regional differences. Notably, observed Aitken mode number concentrations are more than a factor 10 higher than in the model for the N Atlantic but a factor 7 lower than the model in the NW Pacific. We also find that modelled Aitken mode and accumulation mode geometric mean diameters are generally smaller in the model by 10–30%. Comparison with observed free tropospheric Aitken mode distributions suggests that the model underpredicts growth of these particles during descent to the marine boundary layer (MBL). Recent observations of a substantial organic component of free tropospheric aerosol could explain this discrepancy. We find that anthropogenic continental material makes a substantial contribution to N Atlantic MBL aerosol, with typically 60–90% of sulfate across the particle size range coming from anthropogenic sources, even if we analyse air that has spent an average of >120 h away from land. However, anthropogenic primary black carbon and organic carbon particles (at the emission size and quantity assumed here) do not explain the large discrepancies in Aitken mode number. Several explanations for the discrepancy are suggested. The lack of lower atmospheric particle formation in the model may explain low N Atlantic particle concentrations. However, the observed and modelled particle persistence at Cape Grim in the Southern Ocean, does not reveal a diurnal cycle consistent with a photochemically driven local particle source. We also show that a physically based cloud drop activation scheme better explains the observed change in accumulation mode geometric mean diameter with particle number.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1425
Author(s):  
Hao Chen ◽  
Xin Sun ◽  
Xiaochen Wang ◽  
Fengyu Sun ◽  
Peng Zhang ◽  
...  

Polyoxymethylene dimethyl ether (PODEn) is a promising diesel additive, especially in particulate matter reduction. However, how PODEn addition affects the filtration efficiency and regeneration process of a catalytic diesel particulate filter is still unknown. Therefore, this experimental work investigated the size-dependent particulate number removal efficiency under various engine loads and exhaust gas recirculation ratios when fueling with diesel and diesel/PODEn mixture. In addition, the regeneration behavior of the cDPF was studied by determining the break-even temperatures for both tested fuels. The results showed that the cDPF had lower removal efficiencies in nucleation mode particles but higher filtration efficiencies in accumulation mode particles. In addition, the overall filtration efficiency for P10 particles was higher than that for D100 particles. Positioning the upstream cDPF, increasing the EGR ratio slightly decreased the number concentration of nucleation mode particles but greatly increased that of accumulation mode particles. However, increasing the EGR ratio decreased the removal efficiency of nanoparticles, and this effect was more apparent for the P10 case. Under the same period of soot loading, the pressure drop of P10 fuel was significantly lower than that of diesel fuel. In addition, a significantly lower BET was observed for the P10 fuel, in comparison with D100 fuel. In conclusion, adopting cDPF is beneficial for fueling with P10 in terms of the overall filtration efficiency in the particulate number and the lower input energy requirement for active regeneration. However, with the addition of EGR, the lower filtration efficiencies of nanoparticles should be concerned, especially fueling with diesel/PODEn mixture.


Sign in / Sign up

Export Citation Format

Share Document