Cutoff effects in lattice actions at µ ≠ 0

2011 ◽  
Vol 85 (1) ◽  
pp. 129-134
Author(s):  
P. Hegdea ◽  
F. Karsch ◽  
E. Laermann ◽  
S. Scheredin
Keyword(s):  
1998 ◽  
Vol 642 (1-2) ◽  
pp. c275-c281 ◽  
Author(s):  
W. Bietenholz

1983 ◽  
Vol 129 (1-2) ◽  
pp. 95-98 ◽  
Author(s):  
R. Musto ◽  
F. Nicodemi ◽  
R. Pettorino

1998 ◽  
Vol 18 (3) ◽  
pp. 687-702 ◽  
Author(s):  
NANTIAN QIAN ◽  
CHENGBO YUE

Let $\rho_0$ be the standard action of a higher-rank lattice $\Gamma$ on a torus by automorphisms induced by a homomorphism $\pi_0:\Gamma\to SL(n,{\Bbb Z})$. Assume that there exists an abelian group ${\cal A}\subset \Gamma$ such that $\pi_0({\cal A})$ satisfies the following conditions: (1) ${\cal A}$ is ${\Bbb R}$-diagonalizable; (2) there exists an element $a\in {\cal A}$, such that none of its eigenvalues $\lambda_1,\dots,\lambda_n$ has unit absolute value, and for all $i,j,k=1,\dots,n$, $|\lambda_i\lambda_j|\neq|\lambda_k|$; (3) for each Lyapunov functional $\chi_i$, there exist finitely many elements $a_j\in {\cal A}$ such that $E_{\chi_i}=\cap_{j} E^u(a_j)$ (see \S1 for definitions). Then $\rho_0$ is locally rigid. This local rigidity result differs from earlier ones in that it does not require a certain one-dimensionality condition.


2001 ◽  
Vol 170 (1) ◽  
pp. 1-17 ◽  
Author(s):  
Frédéric D.R. Bonnet ◽  
Derek B. Leinweber ◽  
Anthony G. Williams

Sign in / Sign up

Export Citation Format

Share Document