Local rigidity of Anosov higher-rank lattice actions

1998 ◽  
Vol 18 (3) ◽  
pp. 687-702 ◽  
Author(s):  
NANTIAN QIAN ◽  
CHENGBO YUE

Let $\rho_0$ be the standard action of a higher-rank lattice $\Gamma$ on a torus by automorphisms induced by a homomorphism $\pi_0:\Gamma\to SL(n,{\Bbb Z})$. Assume that there exists an abelian group ${\cal A}\subset \Gamma$ such that $\pi_0({\cal A})$ satisfies the following conditions: (1) ${\cal A}$ is ${\Bbb R}$-diagonalizable; (2) there exists an element $a\in {\cal A}$, such that none of its eigenvalues $\lambda_1,\dots,\lambda_n$ has unit absolute value, and for all $i,j,k=1,\dots,n$, $|\lambda_i\lambda_j|\neq|\lambda_k|$; (3) for each Lyapunov functional $\chi_i$, there exist finitely many elements $a_j\in {\cal A}$ such that $E_{\chi_i}=\cap_{j} E^u(a_j)$ (see \S1 for definitions). Then $\rho_0$ is locally rigid. This local rigidity result differs from earlier ones in that it does not require a certain one-dimensionality condition.

2001 ◽  
Vol 21 (1) ◽  
pp. 121-164 ◽  
Author(s):  
GREGORY A. MARGULIS ◽  
NANTIAN QIAN

Under some weak hyperbolicity conditions, we establish C^0- and C^\infty-local rigidity theorems for two classes of standard algebraic actions: (1) left translation actions of higher real rank semisimple Lie groups and their lattices on quotients of Lie groups by uniform lattices; (2) higher rank lattice actions on nilmanifolds by affine diffeomorphisms. The proof relies on an observation that local rigidity of the standard actions is a consequence of the local rigidity of some constant cocycles. The C^0-local rigidity for weakly hyperbolic standard actions follows from a cocycle C^0-local rigidity result proved in the paper. The main ingredients in the proof of the latter are Zimmer's cocycle superrigidity theorem and stability properties of partially hyperbolic vector bundle maps. The C^\infty-local rigidity is deduced from the C^0-local rigidity following a procedure outlined by Katok and Spatzier.Using similar considerations, we also establish C^0-global rigidity of volume preserving, higher rank lattice Anosov actions on nilmanifolds with a finite orbit.


2019 ◽  
Vol 31 (5) ◽  
pp. 1317-1330
Author(s):  
Russell Ricks

AbstractWe prove the following rank rigidity result for proper {\operatorname{CAT}(0)} spaces with one-dimensional Tits boundaries: Let Γ be a group acting properly discontinuously, cocompactly, and by isometries on such a space X. If the Tits diameter of {\partial X} equals π and Γ does not act minimally on {\partial X}, then {\partial X} is a spherical building or a spherical join. If X is also geodesically complete, then X is a Euclidean building, higher rank symmetric space, or a nontrivial product. Much of the proof, which involves finding a Tits-closed convex building-like subset of {\partial X}, does not require the Tits diameter to be π, and we give an alternate condition that guarantees rigidity when this hypothesis is removed, which is that a certain invariant of the group action be even.


2021 ◽  
pp. 1-51
Author(s):  
CHRIS CONNELL ◽  
THANG NGUYEN ◽  
RALF SPATZIER

Abstract This paper develops new techniques for studying smooth dynamical systems in the presence of a Carnot–Carathéodory metric. Principally, we employ the theory of Margulis and Mostow, Métivier, Mitchell, and Pansu on tangent cones to establish resonances between Lyapunov exponents. We apply these results in three different settings. First, we explore rigidity properties of smooth dominated splittings for Anosov diffeomorphisms and flows via associated smooth Carnot–Carathéodory metrics. Second, we obtain local rigidity properties of higher hyperbolic rank metrics in a neighborhood of a locally symmetric one. For the latter application we also prove structural stability of the Brin–Pesin asymptotic holonomy group for frame flows. Finally, we obtain local rigidity properties for uniform lattice actions on the ideal boundary of quaternionic and octonionic symmetric spaces.


2009 ◽  
Vol 170 (1) ◽  
pp. 67-122 ◽  
Author(s):  
David Fisher ◽  
Gregory Margulis

2012 ◽  
Vol 85 (2) ◽  
pp. 202-216 ◽  
Author(s):  
BARBARA PRZEBIERACZ

AbstractWe investigate the Pexider-type functional equation where f, g, h are real functions defined on an abelian group G. We solve this equation under the assumptions G=ℝ and f is continuous.


2012 ◽  
Vol 85 (2) ◽  
pp. 191-201 ◽  
Author(s):  
BARBARA PRZEBIERACZ

AbstractWe investigate the Pexider-type functional equation where f,g,h are real functions defined on an abelian group G.


1999 ◽  
Vol 19 (1) ◽  
pp. 35-60 ◽  
Author(s):  
A. KONONENKO

In Part 1 we describe a duality method for calculating twisted cocycles. In Part 2 we use our method to prove various results on cohomological rigidity of higher-rank cocompact lattice actions. In Part 3 we use the results of Parts 1 and 2 to prove infinitesimal rigidity of the actions of cocompact lattices on the maximal boundaries of some non-compact type symmetric spaces.


1985 ◽  
Vol 28 (3) ◽  
pp. 303-304
Author(s):  
David L. Wilkens

In [6] the structure of any real valued length function on an abelian group G is determined. It is shown there, in Theorem 6.1., that such a length function is an extension of a non-Archimedean length function l1 on N by an Archimedean length function l2 on H=G/N. Any non-Archimedean length function is given by a chain of subgroups, as described in [5], and following from results of Nancy Harrison [2], the length l2 is essentially the absolute value function on a subgroup of R. In the situation above if N≠G then N is a subgroup of G whose elements have bounded lengths. In this paper we show that it is an easy consequence of techniques developed in [1] that this result can be extended to hypercentral groups, thus determining the structure of any length function in this case. We point out that the result does not extend to soluble groups. The infinite dihedral group D∞ is soluble. However if D∞ is regarded as a free product of two cyclic groups of order 2 and is given the length function associated with a free product, as described by Lyndon [3], then N is not a subgroup of D∞, and the lengths of its elements are unbounded.


Sign in / Sign up

Export Citation Format

Share Document