Composite feature vector based cardiac arrhythmia classification using convolutional neural networks

Author(s):  
Gopisetty Ramesh ◽  
Donthi Satyanarayana ◽  
Maruvada Sailaja
2020 ◽  
Vol 10 (2) ◽  
pp. 483 ◽  
Author(s):  
Eko Ihsanto ◽  
Kalamullah Ramli ◽  
Dodi Sudiana ◽  
Teddy Surya Gunawan

Many algorithms have been developed for automated electrocardiogram (ECG) classification. Due to the non-stationary nature of the ECG signal, it is rather challenging to use traditional handcraft methods, such as time-based analysis of feature extraction and classification, to pave the way for machine learning implementation. This paper proposed a novel method, i.e., the ensemble of depthwise separable convolutional (DSC) neural networks for the classification of cardiac arrhythmia ECG beats. Using our proposed method, the four stages of ECG classification, i.e., QRS detection, preprocessing, feature extraction, and classification, were reduced to two steps only, i.e., QRS detection and classification. No preprocessing method was required while feature extraction was combined with classification. Moreover, to reduce the computational cost while maintaining its accuracy, several techniques were implemented, including All Convolutional Network (ACN), Batch Normalization (BN), and ensemble convolutional neural networks. The performance of the proposed ensemble CNNs were evaluated using the MIT-BIH arrythmia database. In the training phase, around 22% of the 110,057 beats data extracted from 48 records were utilized. Using only these 22% labeled training data, our proposed algorithm was able to classify the remaining 78% of the database into 16 classes. Furthermore, the sensitivity ( S n ), specificity ( S p ), and positive predictivity ( P p ), and accuracy ( A c c ) are 99.03%, 99.94%, 99.03%, and 99.88%, respectively. The proposed algorithm required around 180 μs, which is suitable for real time application. These results showed that our proposed method outperformed other state of the art methods.


2021 ◽  
Vol 3 (1) ◽  
pp. 29-37
Author(s):  
Karuppusamy P

In the recent years, there has been a high surge in the use of convolutional neural networks (CNNs) because of the state-of-the art performance in a number of areas like text, audio and video processing. The field of remote sensing applications is however a field that has not fully incorporated the use of CNN. To address this issue, we introduced a novel CNN that can be used to increase the performance of detectors built that use Local Binary Patterns (LBP) and Histogram of Oriented Gradients (HOG). Moreover, in this paper, we have also increased the accuracy of the CNN using two improvements. The first improvement involves feature vector transformation with Euler methodology and combining normalized and raw features. Based on the results observed, we have also performed a comparative study using similar methods and it has been identified that the proposed CNN proves to be an improvement over the others.


2020 ◽  
Vol 2020 (10) ◽  
pp. 28-1-28-7 ◽  
Author(s):  
Kazuki Endo ◽  
Masayuki Tanaka ◽  
Masatoshi Okutomi

Classification of degraded images is very important in practice because images are usually degraded by compression, noise, blurring, etc. Nevertheless, most of the research in image classification only focuses on clean images without any degradation. Some papers have already proposed deep convolutional neural networks composed of an image restoration network and a classification network to classify degraded images. This paper proposes an alternative approach in which we use a degraded image and an additional degradation parameter for classification. The proposed classification network has two inputs which are the degraded image and the degradation parameter. The estimation network of degradation parameters is also incorporated if degradation parameters of degraded images are unknown. The experimental results showed that the proposed method outperforms a straightforward approach where the classification network is trained with degraded images only.


Sign in / Sign up

Export Citation Format

Share Document