building detection
Recently Published Documents


TOTAL DOCUMENTS

357
(FIVE YEARS 83)

H-INDEX

27
(FIVE YEARS 5)

Author(s):  
C. Najjaj ◽  
H. Rhinane ◽  
A. Hilali

Abstract. Researchers in computer vision and machine learning are becoming increasingly interested in image semantic segmentation. Many methods based on convolutional neural networks (CNNs) have been proposed and have made considerable progress in the building extraction mission. This other methods can result in suboptimal segmentation outcomes. Recently, to extract buildings with a great precision, we propose a model which can recognize all the buildings and present them in mask with white and the other classes in black. This developed network, which is based on U-Net, will boost the model's sensitivity. This paper provides a deep learning approach for building detection on satellite imagery applied in Casablanca city, Firstly, to begin we describe the terminology of this field. Next, the main datasets exposed in this project which’s 1000 satellite imagery. Then, we train the model UNET for 25 epochs on the training and validation datasets and testing the pretrained weight model with some unseen satellite images. Finally, the experimental results show that the proposed model offers good performance obtained as a binary mask that extract all the buildings in the region of Casablanca with a higher accuracy and entirety to achieve an average F1 score on test data of 0.91.


2022 ◽  
Vol 14 (2) ◽  
pp. 330
Author(s):  
Sejung Jung ◽  
Kirim Lee ◽  
Won Hee Lee

High-rise buildings (HRBs) as modern and visually unique land use continue to increase due to urbanization. Therefore, large-scale monitoring of HRB is very important for urban planning and environmental protection. This paper performed object-based HRB detection using high-resolution satellite image and digital map. Three study areas were acquired from KOMPSAT-3A, KOMPSAT-3, and WorldView-3, and object-based HRB detection was performed using the direction according to relief displacement by satellite image. Object-based multiresolution segmentation images were generated, focusing on HRB in each satellite image, and then combined with pixel-based building detection results obtained from MBI through majority voting to derive object-based building detection results. After that, to remove objects misdetected by HRB, the direction between HRB in the polygon layer of the digital map HRB and the HRB in the object-based building detection result was calculated. It was confirmed that the direction between the two calculated using the centroid coordinates of each building object converged with the azimuth angle of the satellite image, and results outside the error range were removed from the object-based HRB results. The HRBs in satellite images were defined as reference data, and the performance of the results obtained through the proposed method was analyzed. In addition, to evaluate the efficiency of the proposed technique, it was confirmed that the proposed method provides relatively good performance compared to the results of object-based HRB detection using shadows.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Ngoc Quy BUI ◽  
Dinh Hien LE ◽  
Anh Quan DUONG ◽  
Quoc Long NGUYEN

LiDAR technology has been widely adopted as a proper method for land cover classification.Recently with the development of technology, LiDAR systems can now capture high-resolutionmultispectral bands images with high-density LiDAR point cloud simultaneously. Therefore, it opens newopportunities for more precise automatic land-use classification methods by utilizing LiDAR data. Thisarticle introduces a combining technique of point cloud classification algorithms. The algorithms includeground detection, building detection, and close point classification - the classification is based on pointclouds’ attributes. The main attributes are heigh, intensity, and NDVI index calculated from 4 bands ofcolors extracted from multispectral images for each point. Data of the Leica City Mapper LiDAR systemin an area of 80 ha in Quang Xuong town, Thanh Hoa province, Vietnam was used to deploy theclassification. The data is classified into eight different types of land use consist of asphalt road, otherground, low vegetation, medium vegetation, high vegetation, building, water, and other objects. Theclassification workflow was implemented in the TerraSolid suite, with the result of the automation processcame out with 97% overall accuracy of classification points. The


2021 ◽  
Vol 87 (12) ◽  
pp. 901-906
Author(s):  
Bo Yu ◽  
Fang Chen ◽  
Ying Dong ◽  
Lei Wang ◽  
Ning Wang ◽  
...  

Building detection in big earth data by remote sensing is crucial for urban development. However, improving its accuracy remains challenging due to complicated background objects and different viewing angles from various remotely sensed images. The hereto proposed methods predominantly focus on multi-scale feature learning, which omits features in multiple aspect ratios. Moreover, postprocessing is required to refine the segmentation performance. We propose modified semantic segmentation (MSegnet), a single-shot semantic segmentation model based on a matrix of convolution layers to extract features in multiple scales and aspect ratios. MSegnet consists of two modules: backbone feature learning and matrix convolution to conduct vertical and horizontal learning. The matrix convolution comprises a set of convolution operations with different aspect ratios. MSegnet is applied to a public building data set that is widely used for evaluation and shown to achieve satisfactory accuracy, compared with the published single-shot methods.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2970
Author(s):  
Ahmed I. Shahin ◽  
Sultan Almotairi

Recently, remote sensing satellite image analysis has received significant attention from geo-information scientists. However, the current geo-information systems lack automatic detection of several building characteristics inside the high-resolution satellite images. The accurate extraction of buildings characteristics helps the decision-makers to optimize urban planning and achieve better decisions. Furthermore, Building orientation angle is a very critical parameter in the accuracy of automated building detection algorithms. However, the traditional computer vision techniques lack accuracy, scalability, and robustness for building orientation angle detection. This paper proposes two different approaches to deep building orientation angle estimation in the high-resolution satellite image. Firstly, we propose a transfer deep learning approach for our estimation task. Secondly, we propose a novel optimized DCRN network consisting of pre-processing, scaled gradient layer, deep convolutional units, dropout layers, and regression end layer. The early proposed gradient layer helps the DCRN network to extract more helpful information and increase its performance. We have collected a building benchmark dataset that consists of building images in Riyadh city. The images used in the experiments are 15,190 buildings images. In our experiments, we have compared our proposed approaches and the other approaches in the literature. The proposed system has achieved the lowest root mean square error (RMSE) value of 1.24, the lowest mean absolute error (MAE) of 0.16, and the highest adjusted R-squared value of 0.99 using the RMS optimizer. The cost of processing time of our proposed DCRN architecture is 0.0113 ± 0.0141 s. Our proposed approach has proven its stability with the input building image contrast variation for all orientation angles. Our experimental results are promising, and it is suggested to be utilized in other building characteristics estimation tasks in high-resolution satellite images.


2021 ◽  
Vol 13 (23) ◽  
pp. 4803
Author(s):  
Sani Success Ojogbane ◽  
Shattri Mansor ◽  
Bahareh Kalantar ◽  
Zailani Bin Khuzaimah ◽  
Helmi Zulhaidi Mohd Shafri ◽  
...  

The detection of buildings in the city is essential in several geospatial domains and for decision-making regarding intelligence for city planning, tax collection, project management, revenue generation, and smart cities, among other areas. In the past, the classical approach used for building detection was by using the imagery and it entailed human–computer interaction, which was a daunting proposition. To tackle this task, a novel network based on an end-to-end deep learning framework is proposed to detect and classify buildings features. The proposed CNN has three parallel stream channels: the first is the high-resolution aerial imagery, while the second stream is the digital surface model (DSM). The third was fixed on extracting deep features using the fusion of channel one and channel two, respectively. Furthermore, the channel has eight group convolution blocks of 2D convolution with three max-pooling layers. The proposed model’s efficiency and dependability were tested on three different categories of complex urban building structures in the study area. Then, morphological operations were applied to the extracted building footprints to increase the uniformity of the building boundaries and produce improved building perimeters. Thus, our approach bridges a significant gap in detecting building objects in diverse environments; the overall accuracy (OA) and kappa coefficient of the proposed method are greater than 80% and 0.605, respectively. The findings support the proposed framework and methodologies’ efficacy and effectiveness at extracting buildings from complex environments.


2021 ◽  
Vol 7 ◽  
pp. e772
Author(s):  
Ahmed I. Shahin ◽  
Sultan Almotairi

Building detection in high-resolution satellite images has received great attention, as it is important to increase the accuracy of urban planning. The building boundary detection in the desert environment is a real challenge due to the nature of low contrast images in the desert environment. The traditional computer vision algorithms for building boundary detection lack scalability, robustness, and accuracy. On the other hand, deep learning detection algorithms have not been applied to such low contrast satellite images. So, there is a real need to employ deep learning algorithms for building detection tasks in low contrast high-resolution images. In this paper, we propose a novel building detection method based on a single-shot multi-box (SSD) detector. We develop the state-of-the-art SSD detection algorithm based on three approaches. First, we propose data-augmentation techniques to overcome the low contrast images’ appearance. Second, we develop the SSD backbone using a novel saliency visual attention mechanism. Moreover, we investigate several pre-trained networks performance and several fusion functions to increase the performance of the SSD backbone. The third approach is based on optimizing the anchor-boxes sizes which are used in the detection stage to increase the performance of the SSD head. During our experiments, we have prepared a new dataset for buildings inside Riyadh City, Saudi Arabia that consists of 3878 buildings. We have compared our proposed approach vs other approaches in the literature. The proposed system has achieved the highest average precision, recall, F1-score, and IOU performance. Our proposed method has achieved a fast average prediction time with the lowest variance for our testing set. Our experimental results are very promising and can be generalized to other object detection tasks in low contrast images.


2021 ◽  
Author(s):  
Mgs M Luthfi Ramadhan ◽  
Grafika Jati ◽  
Machmud Roby Alhamidi ◽  
Riskyana Dewi Intan P ◽  
Muhammad Hafizhuddin Hilman ◽  
...  

Author(s):  
A. Spasov ◽  
D. Petrova-Antonova

Abstract. A great number of studies for identification and localization of buildings based on remote sensing data has been conducted over the past few decades. The majority of the more recent models make use of neural networks, which show high performance in semantic segmentation for the purpose of building detection even in complex regions like the city landscape. However, they could require a substantial amount of labelled training data depending on the diversity of objects targeted, which could be expensive and time consuming to acquire. Transfer Learning is a technique that could be used to reduce the amount of data and resources needed by applying knowledge obtained solving one problem to another one. In addition, if open-source data and models are used, this process is much more affordable. In this paper, the Transfer Learning challenges and issues are explored by utilizing an open-sourced pre-trained deep learning model on satellite data for building detection.


Sign in / Sign up

Export Citation Format

Share Document