scholarly journals Enhanced oxidative stability of fish oil by encapsulating in culled banana resistant starch-soy protein isolate based microcapsules in functional bakery products

2014 ◽  
Vol 52 (8) ◽  
pp. 5120-5128 ◽  
Author(s):  
Taslima Ayesha Aktar Nasrin ◽  
Anil Kumar Anal
LWT ◽  
2019 ◽  
Vol 116 ◽  
pp. 108555 ◽  
Author(s):  
Juan D. Rios-Mera ◽  
Erick Saldaña ◽  
Yhosep Ramírez ◽  
Erick A. Auquiñivín ◽  
Izabela D. Alvim ◽  
...  

Foods ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 636 ◽  
Author(s):  
Marta Padial-Domínguez ◽  
F. Javier Espejo-Carpio ◽  
Raúl Pérez-Gálvez ◽  
Antonio Guadix ◽  
Emilia M. Guadix

The incorporation of lipid ingredients into food matrices presents a main drawback—their susceptibility to oxidation—which is associated with the loss of nutritional properties and the generation of undesirable flavors and odors. Oil-in-water emulsions are able to stabilize and protect lipid compounds from oxidation. Driven by consumers’ demand, the search for natural emulsifiers, such as proteins, is gaining much interest in food industries. This paper evaluates the in vitro emulsifying properties of protein hydrolysates from animal (whey protein concentrate) and vegetal origin (a soy protein isolate). By means of statistical modelling and bi-objective optimization, the experimental variables, namely, the protein source, enzyme (i.e., subtilisin, trypsin), degree of hydrolysis (2–14%) and emulsion pH (2–8), were optimized to obtain their maximal in vitro emulsifying properties. This procedure concluded that the emulsion prepared from the soy protein hydrolysate (degree of hydrolysis (DH) 6.5%, trypsin) at pH 8 presented an optimal combination of emulsifying properties (i.e., the emulsifying activity index and emulsifying stability index). For validation purposes, a fish oil-in-water emulsion was prepared under optimal conditions, evaluating its physical and oxidative stability for ten days of storage. This study confirmed that the use of soy protein hydrolysate as an emulsifier stabilized the droplet size distribution and retarded lipid oxidation within the storage period, compared to the use of a non-hydrolyzed soy protein isolate.


2020 ◽  
Vol 23 ◽  
Author(s):  
María Gabriela Vernaza ◽  
Yoon Kil Chang

Abstract Health concerns with the consumption of high-fat products and with respect to the intake of fibre are important for consumers. Vacuum frying process is an alternative frying process that increases the quality of foods. The objective was to develop instant noodles aiming to reduce carbohydrate and fat content by adding soy protein isolate (SPI) and resistant starch (RS3), using conventional and vacuum frying processes. A 22 central composite rotational design was used for each type of process, and the formulations were optimized using the Response Surface Methodology. The noodles were characterized with respect to fat absorption, cooking time, final resistant starch content and firmness. The noodles produced at the optimized point were also characterized for their isoflavone content, amino acid profile and by scanning electronic microscopy (SEM). The response surfaces showed that the addition of SPI and RS3 to the formulation resulted in reduced fat absorption and texture. Comparing both frying processes it was found that noodles obtained by vacuum frying absorbed 3% less fat and were less firm than those produced by conventional frying process. The SEM analysis showed that the noodles obtained by conventional frying had a more porous structure, which allowed an easier fat penetration, whereas those produced by vacuum frying showed a more closed structure with fat impregnated on the surface. Regardless of the process used, it was possible to obtain noodles with improved nutritional value, since they showed high fibre (8%) and protein (approximately 11%) contents, considerable isoflavone content (8.20 mg/100 g) and a complete amino acid profile, due to a significant increase in nearly all the amino acids, especially lysine.


Sign in / Sign up

Export Citation Format

Share Document