scholarly journals On RAM performance of production facilities operating under the Barents Sea harsh environmental conditions

Author(s):  
Masoud Naseri ◽  
Javad Barabady
Author(s):  
Adekunle Peter Orimolade ◽  
Ove Tobias Gudmestad

Interests in exploration and production of oil and gas in cold climate areas has increased in recent times. This can be attributed to the continual depletion of reserves in mature fields, and recent discoveries of large quantities of oil and gas in the cold climate region, including the more recent discovery of the Alta Reservoir, in the Barents Sea. However, marine operations in this region are faced with challenges resulting from its arctic conditions. Knowledge of the physical environment is important in designing offshore structures, and in planning, and executing marine operations. Selection of a suitable field development concept may be influenced by the probability of occurrence of rare events, such as drifting icebergs. Furthermore, occurrence of mesoscale phenomenon such as polar low pressures may adversely affect planned marine operations. In addition, uncertainties in weather forecasting will reflect on the available weather window to perform installation and interventions works. This paper presents some of the challenges in designing and planning for marine operations in the cold climate region. A possible field development concept for the open water areas of the Norwegian sector of the Barents Sea is discussed. The current research work considers the need for further assessment of the probability of occurrence of drifting icebergs as of importance when selecting field development concept. The Floating Production Storage and Offloading (FPSO) is proposed, and this should be designed with an internal turret system that can be disconnected and reconnected. Some of the challenges associated with riser systems design when considering a turret system with the capability to disconnect and reconnect are discussed. This paper also propose the use of ensemble forecasts as an alternative to the use of alpha factors to estimate operational weather window when planning for marine operations in the Barents Sea. The unpredictability nature of the environmental conditions, especially in the early winter is considered a challenge to marine operations.


Minerals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 593
Author(s):  
Liudmila L. Demina ◽  
Olga Dara ◽  
Ramiz Aliev ◽  
Tatiana Alekseeva ◽  
Dmitry Budko ◽  
...  

A comprehensive examination of the elemental (including radionuclides and heavy metals), mineral, and grain-size composition of sediments from different areas of the Barents Sea was performed. Sediment cores were sampled in the Central Deep, Cambridge Strait (Franz Josef Land Archipelago), Russkaya Gavan’ Bay (Novaya Zemlya Archipelago), and Bear Island Trough. We aim to evaluate how the modern and more ancient environmental conditions are reflected in the elemental and mineral composition, as well as to test indicative elemental ratios. The applied methods include elemental analysis using gamma-ray spectroscopy, X-ray fluorescence (XRF), Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), and X-Ray Difractometry XRD analysis of minerals. Difference in sedimentation rates, grain-size composition, and sources of material, are reflected in downcore variation of Si/Al, Mn/Fe, P/Al, Ti/K, and quartz-feldspar ratios. At boundary Early Holocene/Late Deglaciation, intensive bottom currents from the West-Southern shelf areas contributed to increase of Si/Al and Zr/Ca ratios. Distinct growth of the Si/Fe ratio within the sediments deposited over Late Pleistocene to Mid Holocene may be caused by increased contents of the coarse sand material, as well as by abundant fluxes of clay-mineral-loaded glacial meltwater during the main deglaciation phase. The Mn/Fe ratio used as redox proxy, displayed peaks at different depths related to oxygen concentration growth in bottom water.


2020 ◽  
Vol 11 (5-2020) ◽  
pp. 50-67
Author(s):  
O.Yu. Evseeva ◽  

The modern data about fauna of Bryozoa in the northern part of Barents Sea are obtained. The taxonomic and biogeographic composition, distribution features of bryozoan communities, and their quantitative indicators are analyzed. 124 Bryozoa species are identified in the samples, one of which (Uschakovia gorbunoviKluge, 1946) is a new for the Barents Sea fauna. It was found that the richness of the bryozoan fauna is determined by the variety of environmental conditions and depends on the bottom relief (and related factors: soil, hydrodynamic intensity and sedimentation) and the parameters of water masses.


Trudy VNIRO ◽  
2018 ◽  
Vol 173 ◽  
pp. 17-32
Author(s):  
A. L. Karsakov ◽  
◽  
A. G. Trofimov ◽  
O. V. Titov ◽  
◽  
...  

Author(s):  
Valeriy G. Yakubenko ◽  
Anna L. Chultsova

Identification of water masses in areas with complex water dynamics is a complex task, which is usually solved by the method of expert assessments. In this paper, it is proposed to use a formal procedure based on the application of the method of optimal multiparametric analysis (OMP analysis). The data of field measurements obtained in the 68th cruise of the R/V “Academician Mstislav Keldysh” in the summer of 2017 in the Barents Sea on the distribution of temperature, salinity, oxygen, silicates, nitrogen, and phosphorus concentration are used as a data for research. A comparison of the results with data on the distribution of water masses in literature based on expert assessments (Oziel et al., 2017), allows us to conclude about their close structural similarity. Some differences are related to spatial and temporal shifts of measurements. This indicates the feasibility of using the OMP analysis technique in oceanological studies to obtain quantitative data on the spatial distribution of different water masses.


Sign in / Sign up

Export Citation Format

Share Document