scholarly journals Numerical investigations of vortex formation on a generic multiple-swept-wing configuration

Author(s):  
D. Sedlacek ◽  
S. Biechele ◽  
C. Breitsamter

AbstractFor an improvement of the flight stability characteristics of high-agility aircraft, the comprehension of the vortex development, behavior and break down is important. Therefore, numerical investigations on low aspect ratio, multiple-swept-wing configurations are performed in this study to analyze the influence of the numerical method on the vortex formation. The discussed configurations are based on a triple- and double-delta wing planform. Unsteady Reynolds-averaged Navier–Stokes (URANS) simulations and delayed detached eddy simulations (DDES) are performed for both configurations. The simulations are executed at Re $$= 3.0\times 10^6$$ = 3.0 × 10 6 , symmetric freestream conditions, and an angle of attack of $$\alpha = 16^\circ$$ α = 16 ∘ , for consistency with reference wind tunnel data. For the triple-delta-wing configuration, the results of the DDES show a satisfying accordance to the experiments compared to URANS, especially for the flow field and the pitching moment coefficient. For the double-delta-wing configuration, the URANS simulation provides reliable results with low deviation of the aerodynamic coefficients and high precision for the flow field development with respect to the experimental data.

Author(s):  
Christopher Reinbold ◽  
Kaare Sørensen ◽  
Christian Breitsamter

AbstractA numerical tool for the computation of aircraft control surface aerodynamics with flexibility effects is presented. The solution is based on coupled Computational Fluid Dynamics (CFD) and Computational Structural Mechanics (CSM) simulations embedded in the multidisciplinary simulation environment SimServer. In SimServer, the DLR-TAU Code is utilized to obtain the CFD solution by solving the Reynolds-Averaged Navier–Stokes (RANS) equations. Structural displacements are computed with a modal solver. The Chimera implementation of SimServer, suited for hybrid grids, is applied to model the control surfaces. Numerical simulations with the flexible Chimera method are performed for the Model53 wing configuration, which is a generic delta wing with a deployed slat as well as an inboard and outboard trailing edge flap. Aerodynamic and aeroelastic simulations at high dynamic pressure $$q=45$$ q = 45  kPa and transonic speed $${\text {Ma}} = 0.8$$ Ma = 0.8 are performed for several angles of attack $$10^\circ \le \alpha \le 25^\circ$$ 10 ∘ ≤ α ≤ 25 ∘ and flap deflection angles $$-30^\circ \le \delta \le 30^\circ$$ - 30 ∘ ≤ δ ≤ 30 ∘ . The effect of structural deformations on the flow field and control surface effectiveness are analyzed and compared to computations of components treated fully rigid. At the targeted freestream condition $$M=0.8$$ M = 0.8 and $${\text {Re}}=15.1 \times 10^7$$ Re = 15.1 × 10 7 , the flow field around the Model53 configuration is characterized by the interaction of vortices and shock waves. The results of the lift and pitching moment coefficient for the rigid and flexible configuration revealed the importance of taking the structural flexibility into account in order to obtain more accurate results for the considered range of flap deflections. Furthermore, the computational effort of the aerodynamic and aeroelastic simulations are evaluated. The increase in computational effort is shown to be adequate for the given increase in accuracy.


2013 ◽  
Vol 444-445 ◽  
pp. 286-292
Author(s):  
Bing Han ◽  
Min Xu ◽  
Xi Pei ◽  
Xiao Min An

The effect of slender body on the rolling characteristics of a double delta wing is found by comparing the numerical simulation results of the double delta wing and wing-body configuration. The coupled computation system solving the Navier-Stokes equations and the rolling motion equation alternatively to obtain the unsteady vortical flow around the two configurations while rolling. The results conclusively showed the upwash effect of the slender body enhanced the energy of strake vortex and merged vortex.The aerodynamic lag of double delta wing is weak, contrarily, the time lag effect of the wing-body configuration is significant. The asymmetry vortices structure nearby the trailing edge are believed to be the main reason for the unsteady time lag effect.


2016 ◽  
Vol 29 (5) ◽  
pp. 1196-1204 ◽  
Author(s):  
Mojtaba Dehghan Manshadi ◽  
Mehdi Eilbeigi ◽  
Mohammad Kazem Sobhani ◽  
Mehrdad Bazaz Zadeh ◽  
Mohammad Ali Vaziry

2019 ◽  
Vol 8 (2S11) ◽  
pp. 2939-2943

Numerical and experimental investigations of flay over double delta wing at supersonic speed are investigated . For numerical simulations , the body geometry is generated using SolidWorks software , mesh is created using Gambit and solution is obtained using Fluent sofivvare . For the experimental studies , stainless steel model is fabricated and tested in the supersonic Mind tunnel at Mach 2.5 at 0 and 5 angle of attack . The results are presented in the present paper


1995 ◽  
Vol 32 (2) ◽  
pp. 228-234 ◽  
Author(s):  
J. A. Ekaterinaris ◽  
Lewis B. Schiff

1987 ◽  
Author(s):  
CHUNG-HAO HSU ◽  
PETER-MICHAEL HARTWICH ◽  
C. LIU

1988 ◽  
Vol 25 (8) ◽  
pp. 675-676 ◽  
Author(s):  
C.-H. Hsu ◽  
P.-M. Hartwich ◽  
C. H. Liu

AIAA Journal ◽  
1990 ◽  
Vol 28 (6) ◽  
pp. 961-968 ◽  
Author(s):  
C.-H. Hsu ◽  
C. H. Liu

AIAA Journal ◽  
1997 ◽  
Vol 35 ◽  
pp. 567-569
Author(s):  
Roy Y. Myose ◽  
Boon-Kiat Lee ◽  
Shigeo Hayashibara ◽  
L. S. Miller

Sign in / Sign up

Export Citation Format

Share Document