scholarly journals Cross-platform comparison of framed topics in Twitter and Weibo: machine learning approaches to social media text mining

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yi Yang ◽  
Jia-Huey Hsu ◽  
Karl Löfgren ◽  
Wonhyuk Cho
2020 ◽  
Vol 34 (5) ◽  
pp. 826-844 ◽  
Author(s):  
Louis Tay ◽  
Sang Eun Woo ◽  
Louis Hickman ◽  
Rachel M. Saef

In the age of big data, substantial research is now moving toward using digital footprints like social media text data to assess personality. Nevertheless, there are concerns and questions regarding the psychometric and validity evidence of such approaches. We seek to address this issue by focusing on social media text data and (i) conducting a review of psychometric validation efforts in social media text mining (SMTM) for personality assessment and discussing additional work that needs to be done; (ii) considering additional validity issues from the standpoint of reference (i.e. ‘ground truth’) and causality (i.e. how personality determines variations in scores derived from SMTM); and (iii) discussing the unique issues of generalizability when validating SMTM for personality assessment across different social media platforms and populations. In doing so, we explicate the key validity and validation issues that need to be considered as a field to advance SMTM for personality assessment, and, more generally, machine learning personality assessment methods. © 2020 European Association of Personality Psychology


2022 ◽  
pp. 171-195
Author(s):  
Jale Bektaş

Conducting NLP for Turkish is a lot harder than other Latin-based languages such as English. In this study, by using text mining techniques, a pre-processing frame is conducted in which TF-IDF values are calculated in accordance with a linguistic approach on 7,731 tweets shared by 13 famous economists in Turkey, retrieved from Twitter. Then, the classification results are compared with four common machine learning methods (SVM, Naive Bayes, LR, and integration LR with SVM). The features represented by the TF-IDF are experimented in different N-grams. The findings show the success of a text classification problem is relative with the feature representation methods, and the performance superiority of SVM is better compared to other ML methods with unigram feature representation. The best results are obtained via the integration method of SVM with LR with the Acc of 82.9%. These results show that these methodologies are satisfying for the Turkish language.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5924
Author(s):  
Yi Ji Bae ◽  
Midan Shim ◽  
Won Hee Lee

Schizophrenia is a severe mental disorder that ranks among the leading causes of disability worldwide. However, many cases of schizophrenia remain untreated due to failure to diagnose, self-denial, and social stigma. With the advent of social media, individuals suffering from schizophrenia share their mental health problems and seek support and treatment options. Machine learning approaches are increasingly used for detecting schizophrenia from social media posts. This study aims to determine whether machine learning could be effectively used to detect signs of schizophrenia in social media users by analyzing their social media texts. To this end, we collected posts from the social media platform Reddit focusing on schizophrenia, along with non-mental health related posts (fitness, jokes, meditation, parenting, relationships, and teaching) for the control group. We extracted linguistic features and content topics from the posts. Using supervised machine learning, we classified posts belonging to schizophrenia and interpreted important features to identify linguistic markers of schizophrenia. We applied unsupervised clustering to the features to uncover a coherent semantic representation of words in schizophrenia. We identified significant differences in linguistic features and topics including increased use of third person plural pronouns and negative emotion words and symptom-related topics. We distinguished schizophrenic from control posts with an accuracy of 96%. Finally, we found that coherent semantic groups of words were the key to detecting schizophrenia. Our findings suggest that machine learning approaches could help us understand the linguistic characteristics of schizophrenia and identify schizophrenia or otherwise at-risk individuals using social media texts.


2021 ◽  
Author(s):  
Fei Shen ◽  
Wenting Yu ◽  
Chen Min ◽  
Qianying Ye ◽  
Chuanli Xia ◽  
...  

Text mining has been a dominant approach to extracting useful information from massive unstructured data online. But existing tools for Chinese word segmentation are not ideal for processing social media text data in Cantonese. This project developed CyberCan (https://github.com/shenfei1010/CyberCan), a lexicon of contemporary Cantonese based on more than 100 million pieces of internet texts. We compared the performance of CyberCan with existing Mandarin and Cantonese lexicons in terms of their word segmentation performance. Findings suggest that CyberCan outperforms all existing lexicons by a considerable margin.


2015 ◽  
Author(s):  
Jeffrey A Thompson ◽  
Jie Tan ◽  
Casey S Greene

Large, publicly available gene expression datasets are often analyzed with the aid of machine learning algorithms. Although RNA-seq is increasingly the technology of choice, a wealth of expression data already exist in the form of microarray data. If machine learning models built from legacy data can be applied to RNA-seq data, larger, more diverse training datasets can be created and validation can be performed on newly generated data. We developed Training Distribution Matching (TDM), which transforms RNA-seq data for use with models constructed from legacy platforms. We evaluated TDM, as well as quantile normalization and a simple log2 transformation, on both simulated and biological datasets of gene expression. Our evaluation included both supervised and unsupervised machine learning approaches. We found that TDM exhibited consistently strong performance across settings and that quantile normalization also performed well in many circumstances. We also provide a TDM package for the R programming language.


Sign in / Sign up

Export Citation Format

Share Document