feature representation
Recently Published Documents


TOTAL DOCUMENTS

1344
(FIVE YEARS 780)

H-INDEX

41
(FIVE YEARS 16)

2022 ◽  
Vol 3 (1) ◽  
pp. 1-19
Author(s):  
Feng Lu ◽  
Wei Li ◽  
Song Lin ◽  
Chengwangli Peng ◽  
Zhiyong Wang ◽  
...  

Wireless capsule endoscopy is a modern non-invasive Internet of Medical Imaging Things that has been increasingly used in gastrointestinal tract examination. With about one gigabyte image data generated for a patient in each examination, automatic lesion detection is highly desirable to improve the efficiency of the diagnosis process and mitigate human errors. Despite many approaches for lesion detection have been proposed, they mainly focus on large lesions and are not directly applicable to tiny lesions due to the limitations of feature representation. As bleeding lesions are a common symptom in most serious gastrointestinal diseases, detecting tiny bleeding lesions is extremely important for early diagnosis of those diseases, which is highly relevant to the survival, treatment, and expenses of patients. In this article, a method is proposed to extract and fuse multi-scale deep features for detecting and locating both large and tiny lesions. A feature extracting network is first used as our backbone network to extract the basic features from wireless capsule endoscopy images, and then at each layer multiple regions could be identified as potential lesions. As a result, the features maps of those potential lesions are obtained at each level and fused in a top-down manner to the fully connected layer for producing final detection results. Our proposed method has been evaluated on a clinical dataset that contains 20,000 wireless capsule endoscopy images with clinical annotation. Experimental results demonstrate that our method can achieve 98.9% prediction accuracy and 93.5% score, which has a significant performance improvement of up to 31.69% and 22.12% in terms of recall rate and score, respectively, when compared to the state-of-the-art approaches for both large and tiny bleeding lesions. Moreover, our model also has the highest AP and the best medical diagnosis performance compared to state-of-the-art multi-scale models.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
He Ma ◽  
Yi Zuo ◽  
Tieshan Li

With the increasing application and utility of automatic identification systems (AISs), large volumes of AIS data are collected to record vessel navigation. In recent years, the prediction of vessel trajectories has become one of the hottest research issues. In contrast to existing studies, most researchers have focused on the single-trajectory prediction of vessels. This article proposes a multiple-trajectory prediction model and makes two main contributions. First, we propose a novel method of trajectory feature representation that uses a hierarchical clustering algorithm to analyze and extract the vessel navigation behavior for multiple trajectories. Compared with the classic methods, e.g., Douglas–Peucker (DP) and least-squares cubic spline curve approximation (LCSCA) algorithms, the mean loss of trajectory features extracted by our method is approximately 0.005, and it is reduced by 50% and 30% compared to the DP and LCSCA algorithms, respectively. Second, we design an integrated model for simultaneous prediction of multiple trajectories using the proposed features and employ the long short-term memory (LSTM)-based neural network and recurrent neural network (RNN) to pursue this time series task. Furthermore, the comparative experiments prove that the mean value and standard deviation of root mean squared error (RMSE) using the LSTM are 4% and 14% lower than those using the RNN, respectively.


Author(s):  
Na Qiang ◽  
Xiang-Jun Shen ◽  
Chang-Bin Huang ◽  
Shengli Wu ◽  
Timothy Apasiba Abeo ◽  
...  

2022 ◽  
Vol 15 ◽  
Author(s):  
Guohua Zhou ◽  
Bing Lu ◽  
Xuelong Hu ◽  
Tongguang Ni

Magnetic resonance imaging (MRI) can have a good diagnostic function for important organs and parts of the body. MRI technology has become a common and important disease detection technology. At the same time, medical imaging data is increasing at an explosive rate. Retrieving similar medical images from a huge database is of great significance to doctors’ auxiliary diagnosis and treatment. In this paper, combining the advantages of sparse representation and metric learning, a sparse representation-based discriminative metric learning (SRDML) approach is proposed for medical image retrieval of brain MRI. The SRDML approach uses a sparse representation framework to learn robust feature representation of brain MRI, and uses metric learning to project new features into the metric space with matching discrimination. In such a metric space, the optimal similarity measure is obtained by using the local constraints of atoms and the pairwise constraints of coding coefficients, so that the distance between similar images is less than the given threshold, and the distance between dissimilar images is greater than another given threshold. The experiments are designed and tested on the brain MRI dataset created by Chang. Experimental results show that the SRDML approach can obtain satisfactory retrieval performance and achieve accurate brain MRI image retrieval.


2022 ◽  
Author(s):  
Jianlong Zhang ◽  
Qiao Li ◽  
Bin Wang ◽  
Chen Chen ◽  
Tianhong Wang ◽  
...  

Abstract Siamese network based trackers formulate the visual tracking mission as an image matching process by regression and classification branches, which simplifies the network structure and improves tracking accuracy. However, there remain many problems as described below. 1) The lightweight neural networks decreases feature representation ability. The tracker is easy to fail under the disturbing distractors (e.g., deformation and similar objects) or large changes in viewing angle. 2) The tracker cannot adapt to variations of the object. 3) The tracker cannot reposition the object that has failed to track. To address these issues, we first propose a novel match filter arbiter based on the Euclidean distance histogram between the centers of multiple candidate objects to automatically determine whether the tracker fails. Secondly, Hopcroft-Karp algorithm is introduced to select the winners from the dynamic template set through the backtracking process, and object relocation is achieved by comparing the Gradient Magnitude Similarity Deviation between the template and the winners. The experiments show that our method obtains better performance on several tracking benchmarks, i.e., OTB100, VOT2018, GOT-10k and LaSOT, compared with state-of-the-art methods.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Sheraz Naseer ◽  
Rao Faizan Ali ◽  
Suliman Mohamed Fati ◽  
Amgad Muneer

AbstractIn biological systems, Glutamic acid is a crucial amino acid which is used in protein biosynthesis. Carboxylation of glutamic acid is a significant post-translational modification which plays important role in blood coagulation by activating prothrombin to thrombin. Contrariwise, 4-carboxy-glutamate is also found to be involved in diseases including plaque atherosclerosis, osteoporosis, mineralized heart valves, bone resorption and serves as biomarker for onset of these diseases. Owing to the pathophysiological significance of 4-carboxyglutamate, its identification is important to better understand pathophysiological systems. The wet lab identification of prospective 4-carboxyglutamate sites is costly, laborious and time consuming due to inherent difficulties of in-vivo, ex-vivo and in vitro experiments. To supplement these experiments, we proposed, implemented, and evaluated a different approach to develop 4-carboxyglutamate site predictors using pseudo amino acid compositions (PseAAC) and deep neural networks (DNNs). Our approach does not require any feature extraction and employs deep neural networks to learn feature representation of peptide sequences and performing classification thereof. Proposed approach is validated using standard performance evaluation metrics. Among different deep neural networks, convolutional neural network-based predictor achieved best scores on independent dataset with accuracy of 94.7%, AuC score of 0.91 and F1-score of 0.874 which shows the promise of proposed approach. The iCarboxE-Deep server is deployed at https://share.streamlit.io/sheraz-n/carboxyglutamate/app.py.


2022 ◽  
Author(s):  
Chandra Bhushan Kumar

<div>In this study, we have proposed SCL-SSC(Supervised Contrastive Learning for Sleep Stage Classification), a deep learning-based framework for sleep stage classification which performs the task in two stages, 1) feature representation learning, and 2) classification. The feature learner is trained separately to represent the raw EEG signals in the feature space such that the distance between the embedding of EEG signals of the same sleep stage has less than the distance between the embedding of EEG signals of different sleep stages in the euclidean space. On top of feature learners, we have trained the classifier to perform the classification task. The distribution of sleep stages is not uniform in the PSG data, wake(W) and N2 sleep stages appear more frequently than the other sleep stages, which leads to an imbalance dataset problem. This paper addresses this issue by using weighted softmax cross-entropy loss function and also dataset oversampling technique utilized to produce synthetic data points for minority sleep stages for approximately balancing the number of sleep stages in the training dataset. The performance of our proposed model is evaluated on the publicly available Physionet datasets EDF-Sleep 2013 and 2018 versions. We have trained and evaluated our model on two EEG channels (Fpz-Cz and Pz-Oz) on these datasets separately. The evaluation result shows that the performance of SCL-SSC is the best annotation performance compared to the existing state-of art deep learning algorithms to our best of knowledge, with an overall accuracy of 94.1071% with a macro F1 score of 92.6416 and Cohen’s Kappa coefficient(κ) 0.9197. Our ablation studies on SCL-SSC shows that both triplet loss based pre-training of feature learner and oversampling of minority classes are contributing to better performance of the model(SCL-SSC).</div>


2022 ◽  
Author(s):  
Chandra Bhushan Kumar

<div>In this study, we have proposed SCL-SSC(Supervised Contrastive Learning for Sleep Stage Classification), a deep learning-based framework for sleep stage classification which performs the task in two stages, 1) feature representation learning, and 2) classification. The feature learner is trained separately to represent the raw EEG signals in the feature space such that the distance between the embedding of EEG signals of the same sleep stage has less than the distance between the embedding of EEG signals of different sleep stages in the euclidean space. On top of feature learners, we have trained the classifier to perform the classification task. The distribution of sleep stages is not uniform in the PSG data, wake(W) and N2 sleep stages appear more frequently than the other sleep stages, which leads to an imbalance dataset problem. This paper addresses this issue by using weighted softmax cross-entropy loss function and also dataset oversampling technique utilized to produce synthetic data points for minority sleep stages for approximately balancing the number of sleep stages in the training dataset. The performance of our proposed model is evaluated on the publicly available Physionet datasets EDF-Sleep 2013 and 2018 versions. We have trained and evaluated our model on two EEG channels (Fpz-Cz and Pz-Oz) on these datasets separately. The evaluation result shows that the performance of SCL-SSC is the best annotation performance compared to the existing state-of art deep learning algorithms to our best of knowledge, with an overall accuracy of 94.1071% with a macro F1 score of 92.6416 and Cohen’s Kappa coefficient(κ) 0.9197. Our ablation studies on SCL-SSC shows that both triplet loss based pre-training of feature learner and oversampling of minority classes are contributing to better performance of the model(SCL-SSC).</div>


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Jiangjin Gao ◽  
Tao Yang

The existing face detection methods were affected by the network model structure used. Most of the face recognition methods had low recognition rate of face key point features due to many parameters and large amount of calculation. In order to improve the recognition accuracy and detection speed of face key points, a real-time face key point detection algorithm based on attention mechanism was proposed in this paper. Due to the multiscale characteristics of face key point features, the deep convolution network model was adopted, the attention module was added to the VGG network structure, the feature enhancement module and feature fusion module were combined to improve the shallow feature representation ability of VGG, and the cascade attention mechanism was used to improve the deep feature representation ability. Experiments showed that the proposed algorithm not only can effectively realize face key point recognition but also has better recognition accuracy and detection speed than other similar methods. This method can provide some theoretical basis and technical support for face detection in complex environment.


2022 ◽  
Vol 14 (1) ◽  
pp. 215
Author(s):  
Xuerui Niu ◽  
Qiaolin Zeng ◽  
Xiaobo Luo ◽  
Liangfu Chen

The semantic segmentation of fine-resolution remotely sensed images is an urgent issue in satellite image processing. Solving this problem can help overcome various obstacles in urban planning, land cover classification, and environmental protection, paving the way for scene-level landscape pattern analysis and decision making. Encoder-decoder structures based on attention mechanisms have been frequently used for fine-resolution image segmentation. In this paper, we incorporate a coordinate attention (CA) mechanism, adopt an asymmetric convolution block (ACB), and design a refinement fusion block (RFB), forming a network named the fusion coordinate and asymmetry-based U-Net (FCAU-Net). Furthermore, we propose novel convolutional neural network (CNN) architecture to fully capture long-term dependencies and fine-grained details in fine-resolution remotely sensed imagery. This approach has the following advantages: (1) the CA mechanism embeds position information into a channel attention mechanism to enhance the feature representations produced by the network while effectively capturing position information and channel relationships; (2) the ACB enhances the feature representation ability of the standard convolution layer and captures and refines the feature information in each layer of the encoder; and (3) the RFB effectively integrates low-level spatial information and high-level abstract features to eliminate background noise when extracting feature information, reduces the fitting residuals of the fused features, and improves the ability of the network to capture information flows. Extensive experiments conducted on two public datasets (ZY-3 and DeepGlobe) demonstrate the effectiveness of the FCAU-Net. The proposed FCAU-Net transcends U-Net, Attention U-Net, the pyramid scene parsing network (PSPNet), DeepLab v3+, the multistage attention residual U-Net (MAResU-Net), MACU-Net, and the Transformer U-Net (TransUNet). Specifically, the FCAU-Net achieves a 97.97% (95.05%) pixel accuracy (PA), a 98.53% (91.27%) mean PA (mPA), a 95.17% (85.54%) mean intersection over union (mIoU), and a 96.07% (90.74%) frequency-weighted IoU (FWIoU) on the ZY-3 (DeepGlobe) dataset.


Sign in / Sign up

Export Citation Format

Share Document