Strong convergence theorem for monotone inclusion problem in CAT(0) spaces

2018 ◽  
Vol 30 (1-2) ◽  
pp. 151-169 ◽  
Author(s):  
G. C. Ugwunnadi ◽  
C. Izuchukwu ◽  
O. T. Mewomo
2020 ◽  
Vol 10 (1) ◽  
pp. 450-476
Author(s):  
Radu Ioan Boţ ◽  
Sorin-Mihai Grad ◽  
Dennis Meier ◽  
Mathias Staudigl

Abstract In this work we investigate dynamical systems designed to approach the solution sets of inclusion problems involving the sum of two maximally monotone operators. Our aim is to design methods which guarantee strong convergence of trajectories towards the minimum norm solution of the underlying monotone inclusion problem. To that end, we investigate in detail the asymptotic behavior of dynamical systems perturbed by a Tikhonov regularization where either the maximally monotone operators themselves, or the vector field of the dynamical system is regularized. In both cases we prove strong convergence of the trajectories towards minimum norm solutions to an underlying monotone inclusion problem, and we illustrate numerically qualitative differences between these two complementary regularization strategies. The so-constructed dynamical systems are either of Krasnoselskiĭ-Mann, of forward-backward type or of forward-backward-forward type, and with the help of injected regularization we demonstrate seminal results on the strong convergence of Hilbert space valued evolutions designed to solve monotone inclusion and equilibrium problems.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 554
Author(s):  
Hasanen A. Hammad ◽  
Habib ur Rehman ◽  
Hassan Almusawa

In this manuscript, we accelerate the modified inertial Mann-like algorithm by involving Tikhonov regularization terms. Strong convergence for fixed points of nonexpansive mappings in real Hilbert spaces was discussed utilizing the proposed algorithm. Accordingly, the strong convergence of a forward–backward algorithm involving Tikhonov regularization terms was derived, which counts as finding a solution to the monotone inclusion problem and the variational inequality problem. Ultimately, some numerical discussions are presented here to illustrate the effectiveness of our algorithm.


Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1104
Author(s):  
Nattakarn Kaewyong ◽  
Kanokwan Sitthithakerngkiet

In this paper, we study a monotone inclusion problem in the framework of Hilbert spaces. (1) We introduce a new modified Tseng’s method that combines inertial and viscosity techniques. Our aim is to obtain an algorithm with better performance that can be applied to a broader class of mappings. (2) We prove a strong convergence theorem to approximate a solution to the monotone inclusion problem under some mild conditions. (3) We present a modified version of the proposed iterative scheme for solving convex minimization problems. (4) We present numerical examples that satisfy the image restoration problem and illustrate our proposed algorithm’s computational performance.


2021 ◽  
Vol 40 (2) ◽  
pp. 525-559
Author(s):  
Chinedu Izuchukwu ◽  
Godwin C. Ugwunnadi ◽  
Oluwatosin Temitope Mewomo

In this paper, we introduce a modified Ishikawa-type proximal point algorithm for approximating a common solution of minimization problem, monotone inclusion problem and fixed point problem. We obtain a strong convergence of the proposed algorithm to a common solution of finite family of minimization problem, finite family of monotone inclusion problem and fixed point problem for asymptotically demicontractive mapping in Hadamard spaces. Numerical example is given to illustrate the applicability of our main result. Our results complement and extend some recent results in literature.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Kanyanee Saechou ◽  
Atid Kangtunyakarn

Abstract In this paper, we first introduce the two-step intermixed iteration for finding the common solution of a constrained convex minimization problem, and also we prove a strong convergence theorem for the intermixed algorithm. By using our main theorem, we prove a strong convergence theorem for the split feasibility problem. Finally, we apply our main theorem for the numerical example.


2020 ◽  
Vol 53 (1) ◽  
pp. 152-166 ◽  
Author(s):  
Getahun B. Wega ◽  
Habtu Zegeye ◽  
Oganeditse A. Boikanyo

AbstractThe purpose of this article is to study the method of approximation for zeros of the sum of a finite family of maximally monotone mappings and prove strong convergence of the proposed approximation method under suitable conditions. The method of proof is of independent interest. In addition, we give some applications to the minimization problems and provide a numerical example which supports our main result. Our theorems improve and unify most of the results that have been proved for this important class of nonlinear mappings.


Sign in / Sign up

Export Citation Format

Share Document