split feasibility problem
Recently Published Documents


TOTAL DOCUMENTS

199
(FIVE YEARS 78)

H-INDEX

22
(FIVE YEARS 3)

Axioms ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 14
Author(s):  
Kifayat Ullah ◽  
Junaid Ahmad ◽  
Muhammad Arshad ◽  
Zhenhua Ma

In this article, we introduce the class of enriched Suzuki nonexpansive (ESN) mappings. We show that this new class of mappings properly contains the class of Suzuki nonexpansive as well as the class of enriched nonexpansive mappings. We establish existence of fixed point and convergence of fixed point in a Hilbert space setting under the Krasnoselskii iteration process. One of the our main results is applied to solve a split feasibility problem (SFP) in this new setting of mappings. Our main results are a significant improvement of the corresponding results of the literature.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Wenting Chen ◽  
Meixia Li

AbstractThe multiple-sets split feasibility problem is the generalization of split feasibility problem, which has been widely used in fuzzy image reconstruction and sparse signal processing systems. In this paper, we present an inertial relaxed algorithm to solve the multiple-sets split feasibility problem by using an alternating inertial step. The advantage of this algorithm is that the choice of stepsize is determined by Armijo-type line search, which avoids calculating the norms of operators. The weak convergence of the sequence obtained by our algorithm is proved under mild conditions. In addition, the numerical experiments are given to verify the convergence and validity of the algorithm.


Author(s):  
Chibueze C. Okeke ◽  
Lateef O. Jolaoso ◽  
Yekini Shehu

Abstract In this paper, we propose two inertial accelerated algorithms which do not require prior knowledge of operator norm for solving split feasibility problem with multiple output sets in real Hilbert spaces. We prove weak and strong convergence results for approximating the solution of the considered problem under certain mild conditions. We also give some numerical examples to demonstrate the performance and efficiency of our proposed algorithms over some existing related algorithms in the literature.


Author(s):  
J. N. Ezeora ◽  
◽  
F. E. Bazuaye

In this paper, we propose an iterative algorithm for finding solution of split feasibility problem involving a λ−strictly pseudo-nonspreading map and asymptotically nonexpansive semigroups in two real Hilbert spaces. We prove weak and strong convergence theorems using the sequence obtained from the proposed algorithm. Finally, we applied our result to solve a monotone inclusion problem and present a numerical example to support our result.


2021 ◽  
Vol 226 (15) ◽  
pp. 28-35
Author(s):  
Nguyễn Bường ◽  
Nguyễn Dương Nguyễn

Trong bài báo này, để giải bài toán chấp nhận tách đa tập (MSSFP) trong không gian Hilbert, chúng tôi trình bày một cách tiếp cận tổng quát để xây dựng các phương pháp lặp. Chúng tôi đề xuất một lược đồ thuật toán xâu trung bình với sự hội tụ yếu và một lược đồ thuật toán xâu trung bình với sự hội tụ mạnh. Lược đồ thuật toán xâu trung bình với sự hội tụ mạnh được xây dựng dựa trên phương pháp lặp tổng quát cho ánh xạ không giãn, trong đó cỡ bước được tính toán trực tiếp trong mỗi bước lặp mà không cần sử dụng chuẩn của toán tử. Những lược đồ thuật toán này không chỉ bao hàm những cải tiến của phương pháp lặp vòng và lặp đồng thời đã biết như những trường hợp riêng mà còn bao hàm cả những phương pháp lặp mới


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Huijuan Jia ◽  
Shufen Liu ◽  
Yazheng Dang

The paper proposes an inertial accelerated algorithm for solving split feasibility problem with multiple output sets. To improve the feasibility, the algorithm involves computing of projections onto relaxed sets (half spaces) instead of computing onto the closed convex sets, and it does not require calculating matrix inverse. To accelerate the convergence, the algorithm adopts self-adaptive rules and incorporates inertial technique. The strong convergence is shown under some suitable conditions. In addition, some newly derived results are presented for solving the split feasibility problem and split feasibility problem with multiple output sets. Finally, numerical experiments illustrate that the algorithm converges more quickly than some existing algorithms. Our results extend and improve some methods in the literature.


2021 ◽  
Vol 1 (2) ◽  
pp. 106-132
Author(s):  
Austine Efut Ofem ◽  
Unwana Effiong Udofia ◽  
Donatus Ikechi Igbokwe

The purpose of this paper is to introduce a new iterative algorithm to approximate the fixed points of almost contraction mappings and generalized α-nonexpansive mappings. Also, we show that our proposed iterative algorithm converges weakly and strongly to the fixed points of almost contraction mappings and generalized α-nonexpansive mappings. Furthermore, it is proved analytically that our new iterative algorithm converges faster than one of the leading iterative algorithms in the literature for almost contraction mappings. Some numerical examples are also provided and used to show that our new iterative algorithm has better rate of convergence than all of S, Picard-S, Thakur and M iterative algorithms for almost contraction mappings and generalized α-nonexpansive mappings. Again, we show that the proposed iterative algorithm is stable with respect to T and data dependent for almost contraction mappings. Some applications of our main results and new iterative algorithm are considered. The results in this article are improvements, generalizations and extensions of several relevant results existing in the literature.


Author(s):  
Yan Tang ◽  
Pongsakorn Sunthrayuth

In this work, we introduce a modified inertial algorithm for solving the split common null point problem without the prior knowledge of the operator norms in Banach spaces. The strong convergence theorem of our method is proved under suitable assumptions. We apply our result to the split feasibility problem, split equilibrium problem and split minimization problem. Finally, we provide some numerical experiments including compressed sensing to illustrate the performances of the proposed method. The result presented in this paper improves and generalizes many recent important results in the literature.


Sign in / Sign up

Export Citation Format

Share Document