Comparative Studies on Thermal Comfort Properties of Eri Silk, Mulberry Silk, Wool and Linen Fibres

Author(s):  
Brojeswari Das ◽  
Naveen V. Padaki ◽  
K. Jaganathan ◽  
H. M. Ashoka
2018 ◽  
Vol 26 (5(131)) ◽  
pp. 47-53 ◽  
Author(s):  
Balakrshnan Senthil Kumar ◽  
Thangavelu Ramachandran

Eri silk, a wild silk variety available in the northeastern states of India, has better softness, tensile and thermal properties. The present study aimed to develop different knitted structures and investigate the influence of knitting process variables on the thermal comfort and wicking properties. Knitted single jersey and single pique fabric structures were produced with two sets of yarns – 25 tex and 14.32 tex with three levels of loop length. Thermal properties of the fabric were analysed using an Alambeta instrument, and the wicking ability was measured with an vertical wicking tester. Thermal comfort properties of eri silk were also compared with those of conventional mulberry silk, with the experiment result revealing that eri silk has better comfort values. A statistically significant correlation is found between knitting process parameters viz. the yarn count, loop length knitting structure and the thermal and wickability values of the fabrics.


Author(s):  
Adine Gericke ◽  
Jiri Militky ◽  
Mohanapriya Venkataraman ◽  
Hester J. Steyn ◽  
Jana Vermaas

2020 ◽  
Vol 32 (5) ◽  
pp. 631-643
Author(s):  
Sedat Özer ◽  
Yaşar Erayman Yüksel ◽  
Yasemin Korkmaz

PurposeDesign of bedding textiles that contact the human body affects the sleep quality. Bedding textiles contribute to comfort sense during the sleep duration, in addition to ambient and bed microclimate. The purpose of this study is to evaluate the effects of different layer properties on the compression recovery and thermal characteristics of multilayer bedding textiles.Design/methodology/approachIn this study, woven and knitted multilayer bedding textiles were manufactured from fabric, fiber, sponge and interlining, respectively. Different sponge thickness, fiber and interlining weight were used in the layers of samples. Later, the pilling resistance, compression and recovery, air permeability and thermal conductivity of multilayer bedding textiles were investigated.FindingsThe results indicated that samples with the higher layer weight and thickness provide better compression recovery and lower air permeability properties. It was also found that knitted surfaces show the higher air permeability than the woven surfaces depending on the fabric porosity. Layer properties have insignificant effect on the thermal conductivity values.Originality/valueWhile researchers mostly focus on thermal comfort properties of garments, there are limited studies about comfort properties of bedding textiles in the literature. Furthermore, compression recovery properties of bedding textiles have also a great importance in terms of comfort. Originality of this study is that these properties were analyzed together.


2015 ◽  
Vol 10 (1) ◽  
pp. 155892501501000 ◽  
Author(s):  
Nida Oğlakcioğlu ◽  
Ahmet Çay ◽  
Arzu Marmarali ◽  
Emel Mert

Engineered yarns are used to provide better clothing comfort for summer garments because of their high levels of moisture and water vapor management. The aim of this study was to investigate the characteristics of knitted structures that were produced using different types of polyester yarns in order to achieve better thermal comfort properties for summer clothing. However they are relatively expensive. Therefore, in this study engineered polyester yarns were combined with cotton and lyocell yarns by plying. This way, the pronounced characteristics of these yarns were added to the knitted structure as well. Channeled polyester, hollow polyester, channeled/hollow blended polyester, cotton, and lyocell yarns were plied with each other and themselves. Then, single jersey structures were knitted using these ply yarn combinations and air permeability, thermal resistance, thermal absorptivity, water vapor permeability, moisture management, and drying properties were tested. The results indicate that channeled PES fabrics are advantageous for hot climates and high physical activities with regards to high permeability and moisture transfer and also to fast drying properties. Besides, air permeability and thermal properties improved through the combination of lyocell yarn with engineered polyester yarns. However, the use of lyocell or cotton with engineered yarns resulted in a to a decrease in moisture management properties and an increase in drying times


Author(s):  
S H Eryuruk ◽  
V Koncar ◽  
F Kalaoglu ◽  
H Gidik ◽  
X Tao

Sign in / Sign up

Export Citation Format

Share Document