Numerical solution by quintic B-spline collocation finite element method of generalized Rosenau–Kawahara equation

Author(s):  
Sibel Özer
Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 469 ◽  
Author(s):  
Azhar Iqbal ◽  
Nur Nadiah Abd Hamid ◽  
Ahmad Izani Md. Ismail

This paper is concerned with the numerical solution of the nonlinear Schrödinger (NLS) equation with Neumann boundary conditions by quintic B-spline Galerkin finite element method as the shape and weight functions over the finite domain. The Galerkin B-spline method is more efficient and simpler than the general Galerkin finite element method. For the Galerkin B-spline method, the Crank Nicolson and finite difference schemes are applied for nodal parameters and for time integration. Two numerical problems are discussed to demonstrate the accuracy and feasibility of the proposed method. The error norms L 2 , L ∞ and conservation laws I 1 ,   I 2 are calculated to check the accuracy and feasibility of the method. The results of the scheme are compared with previously obtained approximate solutions and are found to be in good agreement.


Author(s):  
Joanna M. Brown ◽  
Malcolm I. G. Bloor ◽  
M. Susan Bloor ◽  
Michael J. Wilson

Abstract A PDE surface is generated by solving partial differential equations subject to boundary conditions. To obtain an approximation of the PDE surface in the form of a B-spline surface the finite element method, with the basis formed from B-spline basis functions, can be used to solve the equations. The procedure is simplest when uniform B-splines are used, but it is also feasible, and in some cases desirable, to use non-uniform B-splines. It will also be shown that it is possible, if required, to modify the non-uniform B-spline approximation in a variety of ways, using the properties of B-spline surfaces.


2006 ◽  
Vol 62 (4) ◽  
pp. 391-402 ◽  
Author(s):  
Yoshihiko HIBI ◽  
Kenji JINNO ◽  
Nobuyuki EGUSA ◽  
Junichi KAWABATA ◽  
Masanori SHIMOMURA

2018 ◽  
Vol 8 (2) ◽  
pp. 29-34
Author(s):  
A. Moghaddam ◽  
A. Nayeri ◽  
S.M. Mirhosseini

Abstract Although various analytical and numerical methods have been proposed by researchers to solve equations, but use of numerical tools with low volume calculations and high accuracy instead of other numerical methods with high volume calculations is inevitable in the analysis of engineering equations. In this paper, B-Spline spectral method was used to study buckling equations of the piles. Results were compared with the calculated amounts of the exact solution and finite element method. Uniform horizontal reaction coefficient has been used in most of proposed methods for analyzing buckling of the pile on elastic base. In reality, soil horizontal reaction coefficient is nonlinear along the pile. So, in this research by using B-Spline method, buckling equation of the pile with nonlinear horizontal reaction coefficient of the soil was investigated. It is worth mentioning that B-Spline method had not been used for buckling of the pile.


2009 ◽  
Vol 8 (2) ◽  
pp. 79 ◽  
Author(s):  
E. C. Romão ◽  
M. D. De Campos ◽  
J. A. Martins ◽  
L. F. M. De Moura

This paper presents the numerical solution by the Galerkin Finite Element Method, on the three-dimensional Laplace and Helmholtz equations, which represent the heat diffusion in solids. For the two applications proposed, the analytical solutions found in the literature review were used in comparison with the numerical solution. The results analysis was made based on the the L2 Norm (average error throughout the domain) and L¥ Norm (maximum error in the entire domain). The two application results, one of the Laplace equation and the Helmholtz equation, are presented and discussed in order to to test the efficiency of the method.


Sign in / Sign up

Export Citation Format

Share Document