Investigation of microstructure changes in Al2O3-YSZ coatings and YSZ coatings and their effect on thermal cycle life
AbstractYttria-stabilized zirconia (YSZ) coatings and Al2O3-YSZ coatings were prepared by atmospheric plasma spraying (APS). Their microstructural changes during thermal cycling were investigated via scanning electron microscopy (SEM) equipped with electron backscatter diffraction (EBSD) and X-ray diffraction (XRD). It was found that the microstructure and microstructure changes of the two coatings were different, including crystallinity, grain orientation, phase, and phase transition. These differences are closely related to the thermal cycle life of the coatings. There is a relationship between crystallinity and crack size. Changes in grain orientation are related to microscopic strain and cracks. Phase transition is the direct cause of coating failure. In this study, the relationship between the changes in the coating microstructure and the thermal cycle life is discussed in detail. The failure mechanism of the coating was comprehensively analyzed from a microscopic perspective.