Selective Laser Melting of Al-7Si-0.5 Mg-0.5Cu: Effect of Heat Treatment on Microstructure Evolution, Mechanical Properties and Wear Resistance

Author(s):  
Pei Wang ◽  
Sijie Yu ◽  
Jaskarn Shergill ◽  
Anil Chaubey ◽  
Jürgen Eckert ◽  
...  
2018 ◽  
Vol 284 ◽  
pp. 615-620 ◽  
Author(s):  
R.M. Baitimerov ◽  
P.A. Lykov ◽  
L.V. Radionova

TiAl6V4 titanium base alloy is widely used in aerospace and medical industries. Specimens for tensile tests from TiAl6V4 with porosity less than 0.5% was fabricated by selective laser melting (SLM). Specimens were treated using two heat treatment procedures, third batch of specimens was tested in as-fabricated statement after machining. Tensile tests were carried out at room temperature. Microstructure and mechanical properties of SLM fabricated TiAl6V4 after different heat treatments were investigated.


2017 ◽  
Vol 44 (9) ◽  
pp. 0902001
Author(s):  
肖振楠 Xiao Zhennan ◽  
刘婷婷 Liu Tingting ◽  
廖文和 Liao Wenhe ◽  
张长东 Zhang Changdong ◽  
杨涛 Yang Tao

Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1121 ◽  
Author(s):  
Li ◽  
Liang ◽  
Tian ◽  
Yang ◽  
Xie ◽  
...  

Titanium composite strengthened by Ti3Al precipitations is considered to be one of the excellent materials that is widely used in engineering. In this work, we prepared a kind of Ti-Ti3Al metallic composite by in-situ synthesis technology during the SLM (selective laser melting) process, and analyzed its microstructure, wear resistance, microhardness, and compression properties. The results showed that the Ti-Ti3Al composite, prepared by in-situ synthesis technology based on SLM, had more homogeneous Ti3Al-enhanced phase dispersion strengthening structure. The grain size of the workpiece was about 1 μm, and that of the Ti3Al particle was about 200 nm. Granular Ti3Al was precipitated after the aluminum-containing workpiece formed, with a relatively uniform distribution. Regarding the mechanical properties, the hardness (539 HV) and the wear resistance were significantly improved when compared with the Cp-Ti workpiece. The compressive strength of the workpiece increased from 886.32 MPa to 1568 MPa, and the tensile strength of the workpiece increased from 531 MPa to 567 MPa after adding aluminum. In the future, the combination of in-situ synthesis technology and SLM technology can be used to flexibly adjust the properties of Ti-based materials.


2018 ◽  
Vol 764 ◽  
pp. 1056-1071 ◽  
Author(s):  
Xingchen Yan ◽  
Shuo Yin ◽  
Chaoyue Chen ◽  
Chunjie Huang ◽  
Rodolphe Bolot ◽  
...  

2018 ◽  
Vol 770 ◽  
pp. 179-186 ◽  
Author(s):  
Jing Bo Gao ◽  
Xiao Li Zhao ◽  
Ju Kun Yue ◽  
Meng Chao Qi ◽  
De Liang Zhang

Ti-6Al-4V (wt%) alloy samples with dog-bone and box shapes respectively were fabricated by selective laser melting (SLM). The microstructures and mechanical properties of the 3D printed Ti-6Al-4V samples with and without heat treatment were characterized and tested. The microstructures of the as-fabricated dog-bone shaped samples were mainly composed of acicular α’ phase. After annealing at 700°C, the acicular α’ phase changed into an α/β lamellar structure. After solution treatment at 955°C, water quenching and aging at 550°C, the microstructure was mainly composed of primary α phase and α/β lamellar structure. The optimum heat treatment is annealing, and the mechanical properties of the annealed sample are as follows: yield strength: 1015 MPa, ultimate tensile strength (UTS): 1083 MPa and elongation to fracture: 7.9%. The microstructures of the box-shaped samples after annealing mainly consist of α phase and α/β lamellar structure. When stretched along the direction parallel to the crystal growth direction, the yield strength and UTS of the sample are 1054 and 1090 MPa,and its elongation to fracture is 6.3%. When stretched along the direction perpendicular to the crystal growth direction, the yield strength and UTS of the sample are 1019 and 1068 MPa respectively, and its elongation to fracture is 8.7%.


2018 ◽  
Vol 941 ◽  
pp. 698-703 ◽  
Author(s):  
Milad Ghayoor ◽  
Sunil B. Badwe ◽  
Harish Irrinki ◽  
Sundar V. Atre ◽  
Somayeh Pasebani

Water atomized and gas atomized 17-4 PH stainless steel powder were used as feedstock in selective laser melting process. Gas atomized powder revealed single martensitic phase after printing and heat treatment. As-printed water atomized powder contained dual martensitic and austenitic phase. The H900 heat treatment cycle was not effective in enhancing mechanical properties of the water atomized powder after laser melting. However, after solutionizing at 1315 oC and aging at 482oC fully martensitic structure was observed with yield strength of 1000 MPa and ultimate tensile strength of 1261 MPa which are comparable to those of gas atomized, 1254 MPa and 1300 MPa, respectively. Improved mechanical properties in water atomized powder was found to be related to presence of finer martensite. Our results imply that water atomized powder is a promising cheaper feedstock alternative to gas atomized powder.


Sign in / Sign up

Export Citation Format

Share Document