A pseudo walk matrix \(\mathbf{W}_\mathbf{v}\) of a graph \(G\) having adjacency matrix \(\mathbf{A}\) is an \(n\times n\) matrix with columns \(\mathbf{v},\mathbf{A}\mathbf{v},\mathbf{A}^2\mathbf{v},\ldots,\mathbf{A}^{n-1}\mathbf{v}\) whose Gram matrix has constant skew diagonals, each containing walk enumerations in \(G\). We consider the factorization over \(\mathbb{Q}\) of the minimal polynomial \(m(G,x)\) of \(\mathbf{A}\). We prove that the rank of \(\mathbf{W}_\mathbf{v}\), for any walk vector \(\mathbf{v}\), is equal to the sum of the degrees of some, or all, of the polynomial factors of \(m(G,x)\). For some adjacency matrix \(\mathbf{A}\) and a walk vector \(\mathbf{v}\), the pair \((\mathbf{A},\mathbf{v})\) is controllable if \(\mathbf{W}_\mathbf{v}\) has full rank. We show that for graphs having an irreducible characteristic polynomial over \(\mathbb{Q}\), the pair \((\mathbf{A},\mathbf{v})\) is controllable for any walk vector \(\mathbf{v}\). We obtain the number of such graphs on up to ten vertices, revealing that they appear to be commonplace. It is also shown that, for all walk vectors \(\mathbf{v}\), the degree of the minimal polynomial of the largest eigenvalue of \(\mathbf{A}\) is a lower bound for the rank of \(\mathbf{W}_\mathbf{v}\). If the rank of \(\mathbf{W}_\mathbf{v}\) attains this lower bound, then \((\mathbf{A},\mathbf{v})\) is called a recalcitrant pair. We reveal results on recalcitrant pairs and present a graph having the property that \((\mathbf{A},\mathbf{v})\) is neither controllable nor recalcitrant for any walk vector \(\mathbf{v}\).