complement graph
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 8)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Vol 26 (4) ◽  
pp. 80
Author(s):  
Xue Yang ◽  
Hong Bian ◽  
Haizheng Yu ◽  
Dandan Liu

Let G=(V(G),E(G)) be a connected graph with n vertices and m edges. A bijection f:E(G)→{1,2,⋯,m} is an edge labeling of G. For any vertex x of G, we define ω(x)=∑e∈E(x)f(e) as the vertex label or weight of x, where E(x) is the set of edges incident to x, and f is called a local antimagic labeling of G, if ω(u)≠ω(v) for any two adjacent vertices u,v∈V(G). It is clear that any local antimagic labelling of G induces a proper vertex coloring of G by assigning the vertex label ω(x) to any vertex x of G. The local antimagic chromatic number of G, denoted by χla(G), is the minimum number of different vertex labels taken over all colorings induced by local antimagic labelings of G. In this paper, we present explicit local antimagic chromatic numbers of Fn∨K2¯ and Fn−v, where Fn is the friendship graph with n triangles and v is any vertex of Fn. Moreover, we explicitly construct an infinite class of connected graphs G such that χla(G)=χla(G∨K2¯), where G∨K2¯ is the join graph of G and the complement graph of complete graph K2. This fact leads to a counterexample to a theorem of Arumugam et al. in 2017, and our result also provides a partial solution to Problem 3.19 in Lau et al. in 2021.


Author(s):  
Jürgen Jost ◽  
Raffaella Mulas ◽  
Florentin Münch

AbstractWe offer a new method for proving that the maxima eigenvalue of the normalized graph Laplacian of a graph with n vertices is at least $$\frac{n+1}{n-1}$$ n + 1 n - 1 provided the graph is not complete and that equality is attained if and only if the complement graph is a single edge or a complete bipartite graph with both parts of size $$\frac{n-1}{2}$$ n - 1 2 . With the same method, we also prove a new lower bound to the largest eigenvalue in terms of the minimum vertex degree, provided this is at most $$\frac{n-1}{2}$$ n - 1 2 .


2020 ◽  
Vol 3 (3) ◽  
pp. 53-61
Author(s):  
Mohammed Saad Alsharafi ◽  
◽  
Mahioub Mohammed Shubatah ◽  
Abdu Qaid Alameri ◽  
◽  
...  

A topological index of graph \(G\) is a numerical parameter related to graph which characterizes its molecular topology and is usually graph invariant. Topological indices are widely used to determine the correlation between the specific properties of molecules and the biological activity with their configuration in the study of quantitative structure-activity relationships (QSARs). In this paper some basic mathematical operations for the forgotten index of complement graph operations such as join \(\overline {G_1+G_2}\), tensor product \(\overline {G_1 \otimes G_2}\), Cartesian product \(\overline {G_1\times G_2}\), composition \(\overline {G_1\circ G_2}\), strong product \(\overline {G_1\ast G_2}\), disjunction \(\overline {G_1\vee G_2}\) and symmetric difference \(\overline {G_1\oplus G_2}\) will be explained. The results are applied to molecular graph of nanotorus and titania nanotubes.


Author(s):  
Mohammed S. Alsharafi ◽  
Mahioub M. Shubatah ◽  
Abdu Q. Alameri

In this paper, some basic mathematical operation for the second Zagreb indices of graph containing the join and strong product of graph operation, and the rst and second Zagreb indices of complement graph operations such as cartesian product G1 G2, composition G1 G2, disjunction G1 _ G2, symmetric dierence G1 G2, join G1 + G2, tensor product G1  G2, and strong product G1 G2 will be explained. The results are applied to molecular graph of nanotorus and titania nanotubes.


2020 ◽  
Vol 595 ◽  
pp. 1-12
Author(s):  
Seyed Ahmad Mojallal ◽  
Pierre Hansen

2020 ◽  
Vol 28 (1) ◽  
pp. 41-63
Author(s):  
Sebastian Koch
Keyword(s):  

SummaryThis article formalizes different variants of the complement graph in the Mizar system [3], based on the formalization of graphs in [6].


Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 690
Author(s):  
Jianqiang Hao ◽  
Yunzhan Gong ◽  
Jianzhi Sun ◽  
Li Tan

This paper puts forward an innovative theory and method to calculate the canonical labelings of graphs that are distinct to N a u t y ’s. It shows the correlation between the canonical labeling of a graph and the canonical labeling of its complement graph. It regularly examines the link between computing the canonical labeling of a graph and the canonical labeling of its o p e n k-n e i g h b o r h o o d s u b g r a p h. It defines d i f f u s i o n d e g r e e s e q u e n c e s and e n t i r e d i f f u s i o n d e g r e e s e q u e n c e. For each node of a graph G, it designs a characteristic m _ N e a r e s t N o d e to improve the precision for calculating canonical labeling. Two theorems established here display how to compute the first nodes of M a x Q ( G ) . Another theorem presents how to determine the second nodes of M a x Q ( G ) . When computing C m a x ( G ) , if M a x Q ( G ) already holds the first i nodes u 1 , u 2 , ⋯ , u i , Diffusion and Nearest Node theorems provide skill on how to pick the succeeding node of M a x Q ( G ) . Further, it also establishes two theorems to determine the C m a x ( G ) of disconnected graphs. Four algorithms implemented here demonstrate how to compute M a x Q ( G ) of a graph. From the results of the software experiment, the accuracy of our algorithms is preliminarily confirmed. Our method can be employed to mine the frequent subgraph. We also conjecture that if there is a node v ∈ S ( G ) meeting conditions C m a x ( G - v ) ⩽ C m a x ( G - w ) for each w ∈ S ( G ) ∧ w ≠ v , then u 1 = v for M a x Q ( G ) .


2018 ◽  
Vol 13 (04) ◽  
pp. 2050075
Author(s):  
Mohamed Aqalmoun

Let [Formula: see text] be a quasi-compact scheme and [Formula: see text]. By [Formula: see text] and [Formula: see text], we denote the set of closed points of [Formula: see text] and the closure of the subset [Formula: see text]. Let [Formula: see text] be a nonempty subset of [Formula: see text]. We define the [Formula: see text]-Zariski topology graph on the scheme [Formula: see text], denoted by [Formula: see text], as an undirected graph whose vertex set is the set [Formula: see text], for two distinct vertices [Formula: see text] and [Formula: see text], there is an arc from [Formula: see text] to [Formula: see text], denoted by [Formula: see text], whenever [Formula: see text]. In this paper, we study the connectivity properties of the graph [Formula: see text], we establish the relationship between the connectivity of the graph [Formula: see text] and the structure of irreducible components of the scheme [Formula: see text]. Also, we characterize when the complement graph of the Zariski topology graph [Formula: see text] is a complete multipartite graph.


2018 ◽  
Vol 23 (12) ◽  
pp. 3973-3978
Author(s):  
Narayan Phadatare ◽  
Vilas Kharat ◽  
Sachin Ballal
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document