scholarly journals Some open problems in low dimensional dynamical systems

SeMA Journal ◽  
2021 ◽  
Author(s):  
Armengol Gasull
10.37236/9475 ◽  
2020 ◽  
Vol 27 (3) ◽  
Author(s):  
Colin Defant ◽  
James Propp

Given a finite set $X$ and a function $f:X\to X$, we define the \emph{degree of noninvertibility} of $f$ to be $\displaystyle\deg(f)=\frac{1}{|X|}\sum_{x\in X}|f^{-1}(f(x))|$. This is a natural measure of how far the function $f$ is from being bijective. We compute the degrees of noninvertibility of some specific discrete dynamical systems, including the Carolina solitaire map, iterates of the bubble sort map acting on permutations, bubble sort acting on multiset permutations, and a map that we call "nibble sort." We also obtain estimates for the degrees of noninvertibility of West's stack-sorting map and the Bulgarian solitaire map. We then turn our attention to arbitrary functions and their iterates. In order to compare the degree of noninvertibility of an arbitrary function $f:X\to X$ with that of its iterate $f^k$, we prove that \[\max_{\substack{f:X\to X\\ |X|=n}}\frac{\deg(f^k)}{\deg(f)^\gamma}=\Theta(n^{1-1/2^{k-1}})\] for every real number $\gamma\geq 2-1/2^{k-1}$. We end with several conjectures and open problems.  


2003 ◽  
Vol 13 (07) ◽  
pp. 1627-1647 ◽  
Author(s):  
F. Balibrea ◽  
L. Reich ◽  
J. Smítal

The aim of this paper is to give an account of some problems considered in the past years in the setting of Discrete Dynamical Systems and Iterative Functional Equations, some new research directions and also state some open problems.


2016 ◽  
Vol 27 (6) ◽  
pp. 904-922 ◽  
Author(s):  
STEPHEN COOMBES ◽  
RÜDIGER THUL

The master stability function is a powerful tool for determining synchrony in high-dimensional networks of coupled limit cycle oscillators. In part, this approach relies on the analysis of a low-dimensional variational equation around a periodic orbit. For smooth dynamical systems, this orbit is not generically available in closed form. However, many models in physics, engineering and biology admit to non-smooth piece-wise linear caricatures, for which it is possible to construct periodic orbits without recourse to numerical evolution of trajectories. A classic example is the McKean model of an excitable system that has been extensively studied in the mathematical neuroscience community. Understandably, the master stability function cannot be immediately applied to networks of such non-smooth elements. Here, we show how to extend the master stability function to non-smooth planar piece-wise linear systems, and in the process demonstrate that considerable insight into network dynamics can be obtained. In illustration, we highlight an inverse period-doubling route to synchrony, under variation in coupling strength, in globally linearly coupled networks for which the node dynamics is poised near a homoclinic bifurcation. Moreover, for a star graph, we establish a mechanism for achieving so-called remote synchronisation (where the hub oscillator does not synchronise with the rest of the network), even when all the oscillators are identical. We contrast this with node dynamics close to a non-smooth Andronov–Hopf bifurcation and also a saddle node bifurcation of limit cycles, for which no such bifurcation of synchrony occurs.


2014 ◽  
Vol 19 (3) ◽  
pp. 359-370 ◽  
Author(s):  
Jadallah M. Jawdat ◽  
Ishak Hashim ◽  
Beer S. Bhadauria ◽  
Shaher Momani

The effect of couple-stress fluid field on chaotic convection in a fluid layer heated from below was studied in this paper based on the theory of dynamical systems. A low-dimensional, Lorenz-like model was obtained using Galerkin truncated approximations. The fourth-order Runge–Kutta method was employed to solve the nonlinear system. The results show that inhibition of chaotic convection depends strongly on the couple-stress parameter.


Sign in / Sign up

Export Citation Format

Share Document