stability function
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 28)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Vol 9 ◽  
Author(s):  
Jian Zhu ◽  
Da Huang ◽  
Zhiyong Yu ◽  
Ping Pei

In the research on complex networks, synchronizability is a significant measurement of network nature. Several research studies center around the synchronizability of single-layer complex networks and few studies on the synchronizability of multi-layer networks. Firstly, this paper calculates the Laplacian spectrum of multi-layer dual-center coupled star networks and multi-layer dual-center coupled star–ring networks according to the master stability function (MSF) and obtains important indicators reflecting the synchronizability of the above two network structures. Secondly, it discusses the relationships among synchronizability and various parameters, and numerical simulations are given to illustrate the effectiveness of the theoretical results. Finally, it is found that the two sorts of networks studied in this paper are of the same synchronizability, and compared with that of a single-center network structure, the synchronizability of two dual-center structures is relatively weaker.


2021 ◽  
Vol 1 ◽  
Author(s):  
Suman Saha ◽  
Syamal Kumar Dana

We present an exemplary system of three identical oscillators in a ring interacting repulsively to show up chimera patterns. The dynamics of individual oscillators is governed by the superconducting Josephson junction. Surprisingly, the repulsive interactions can only establish a symmetry of complete synchrony in the ring, which is broken with increasing repulsive interactions when the junctions pass through serials of asynchronous states (periodic and chaotic) but finally emerge into chimera states. The chimera pattern first appears in chaotic rotational motion of the three junctions when two junctions evolve coherently, while the third junction is incoherent. For larger repulsive coupling, the junctions evolve into another chimera pattern in a periodic state when two junctions remain coherent in rotational motion and one junction transits to incoherent librational motion. This chimera pattern is sensitive to initial conditions in the sense that the chimera state flips to another pattern when two junctions switch to coherent librational motion and the third junction remains in rotational motion, but incoherent. The chimera patterns are detected by using partial and global error functions of the junctions, while the librational and rotational motions are identified by a libration index. All the collective states, complete synchrony, desynchronization, and two chimera patterns are delineated in a parameter plane of the ring of junctions, where the boundaries of complete synchrony are demarcated by using the master stability function.


Author(s):  
Janarthanan Ramadoss ◽  
Karthikeyan Rajagopal ◽  
Hayder Natiq ◽  
Iqtadar Hussain

Abstract The master stability function (MSF) is an approach to evaluate the local stability of the synchronization in coupled oscillators. Computing the MSF of a network according to its parameters results in a curve whose shape is dependent on the nodes’ dynamics, network topology, coupling function, and coupling strength. This paper calculates the MSF of networks of two diffusively coupled oscillators by considering different single variable and multi-variable couplings. Then, the linearity of the MSF is investigated by fitting a straight line to the MSF curve, and the root mean square error is obtained. It is observed that the multi-variable coupling with equal coefficients on all variables results in a linear MSF regardless of the dynamics of the nodes.


2021 ◽  
Vol 31 (2) ◽  
pp. 100-107

The paper focuses on the controller designing for the position and speed of non-salient synchronous type axial self-bearing motors. The motor creates the magnetic field to lift the motor along the shaft and generate rotating torque. Firstly, the motor electro-mechanical relations are analyzed to formulate an accurate mathematical model, then a vector control structure is proposed. The force components control the axial position, and the torque controls the motor speed. Secondly, based on the Lyapunov stability function, the dynamic surface control is used to design position and speed controllers. The system simulation results show that the drive system ensures stability and tracking performance. In addition, the interaction between position and speed loops of the control loop is also negligible


Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2135
Author(s):  
Md Sayeed Anwar ◽  
Dibakar Ghosh ◽  
Nikita Frolov

Relay synchronization in multi-layer networks implies inter-layer synchronization between two indirectly connected layers through a relay layer. In this work, we study the relay synchronization in a three-layer multiplex network by introducing degree-based weighting mechanisms. The mechanism of within-layer connectivity may be hubs-repelling or hubs-attracting whenever low-degree or high-degree nodes receive strong influence. We adjust the remote layers to hubs-attracting coupling, whereas the relay layer may be unweighted, hubs-repelling, or hubs-attracting network. We establish that relay synchronization is improved when the relay layer is hubs-repelling compared to the other cases. We determine analytically necessary stability conditions of relay synchronization state using the master stability function approach. Finally, we explore the relation between synchronization and the topological property of the relay layer. We find that a higher clustering coefficient hinders synchronizability, and vice versa. We also look into the intra-layer synchronization in the proposed weighted triplex network and establish that intra-layer synchronization occurs in a wider range when relay layer is hubs-attracting.


Cell ◽  
2021 ◽  
Vol 184 (19) ◽  
pp. 4857-4873
Author(s):  
Michael R. Sawaya ◽  
Michael P. Hughes ◽  
Jose A. Rodriguez ◽  
Roland Riek ◽  
David S. Eisenberg

2021 ◽  
Vol 14 (3) ◽  
pp. 193-200

Abstract: The thermodynamic model based on cluster of two atoms is considered with the view to obtaining Scc(0) and the excess stability function of Scc(0). Concentration-concentration fluctuation; Scc(0) of four binary molten alloys was calculated. The thermodynamic properties of these alloys are evaluated based on cluster of two atoms (A & B) or (B & A). Each system has the view of obtaining concentration-concentration fluctuation; Scc(0) enumerating the low-order atomic correlation in the nearest neighbour shell of liquid binary alloys.The highlights of excess stability functions(ES) of Scc(0) of these alloys were reported. The values of Scc(0) for all these alloys are higher than the ideal solution values. The values of Scc(0) for Bi-Cd alloy is close to the ideal Scc (0). The indication of the excess stability of Scc(0) for some alloys is in support of homocoordination. The Scc(0) and excess stability function of Scc (0) for the four alloys are presented. Keywords: Concentration-concentration fluctuation, Excess stability function, Ordering energy.


Author(s):  
Rico Berner ◽  
Serhiy Yanchuk

This work introduces a methodology for studying synchronization in adaptive networks with heterogeneous plasticity (adaptation) rules. As a paradigmatic model, we consider a network of adaptively coupled phase oscillators with distance-dependent adaptations. For this system, we extend the master stability function approach to adaptive networks with heterogeneous adaptation. Our method allows for separating the contributions of network structure, local node dynamics, and heterogeneous adaptation in determining synchronization. Utilizing our proposed methodology, we explain mechanisms leading to synchronization or desynchronization by enhanced long-range connections in nonlocally coupled ring networks and networks with Gaussian distance-dependent coupling weights equipped with a biologically motivated plasticity rule.


2021 ◽  
Vol 14 (2) ◽  
pp. 111-116

Abstract: The thermodynamic model based on clustering of two atoms is considered with the view to obtain the concentration-concentration fluctuation, Scc(0) and the darken stability function. The thermodynamic properties of these alloys were evaluated based on clustering of two atoms (A & B) or (B & A). Each system has the view of obtaining concentration-concentration fluctuation, Scc(0) enumerating the low-order atomic correlation in the nearest neighbour shell of liquid binary alloys. The highlights of reciprocals of Scc(0) of these alloys were noted . The values of Scc(0) for Al-In alloy throughout the entire concentration were positive and higher for activity ratio and lower than the ideal solution values for free energy of mixing at specific Al composition. The values of darken stability function of Al-In alloy fall below the ideal darken stability function for activity ratio and free energy of mixing . The indication of the reciprocal of Scc(0) for all the alloys is in support of homocoordination / heterocoordination in the nearest neighbour shell. The Scc(0) and darken stability function of Bi-Zn binary alloys were noted with fluctuations. Keywords: Concentration-concentration fluctuation, Darken stability function, Ordering energy.


Sign in / Sign up

Export Citation Format

Share Document