An MFV-based image processing filter and its application to seismic tomographic images
AbstractIn the tomographic reconstruction of seismic travel time data, care must be taken to keep the propagation of data errors to the model space under control. The non-Gaussian noise distribution—especially the outliers in the data sets- can cause appreciable distortions in the tomographic imaging. To reduce the noise sensitivity well-developed tomography algorithms can be used. On the other hand, the quality of the tomogram can further be improved by using image processing tools. In the paper, a newly developed robust filter is presented, in which the Most Frequent Value (MFV) method developed by Steiner is applied. To analyze the noise reduction capability of the new filter (called Steiner-filter) and to compare it to smoothing filters based on arithmetic- and binomial mean, as well as median, medium-sized tomographic images are used. The MFV-based filter is successfully tested also in edge detection procedures.