Abstract
Wheat (Triticum aestivum L.) is one of the main food crops in the world and a primary source of zinc (Zn) and iron (Fe) in the human body. The genetic mechanisms underlying related traits have been clarified, thereby providing a molecular theoretical foundation for the development of germplasm resources. In this study, 23,536 high-quality DArT markers were used to map quantitative trait loci (QTL) of grain Zn (GZn) and grain Fe (GFe) concentrations in recombinant inbred lines from Avocet/Chilero. A total of 17 QTLs located on chromosomes 1BL, 2BL, 3BL, 4AL, 4BS, 5AL, 5DL, 6AS, 6BS, 6DS, and 7AS accounted for 0.38–16.62% of the phenotypic variance. QGZn.haust-4AL, QGZn.haust-7AS.1, and QGFe.haust-6BS were detected on chromosomes 4AL, 6BS, and 7AS, accounting for 10.63–16.62% of the phenotypic variance. Four stable QTLs, QGZn.haust-4AL, QGFe.haust-1BL, QGFe.haust-4AL, and QGFe.haust-5DL were located on chromosomes 1BL, 4AL, and 5DL. Three pleiotropic effects locus for GZn and GFe concentrations were located on chromosomes 1BL, 4AL, and 5DL. Two high-throughput Kompetitive Allele Specific PCR markers were developed by closely linking single nucleotide polymorphisms on chromosomes 4AL and 5DL, which were validated by a germplasm panel. Therefore, it is the most important that quantitative trait loci and KASP marker for grain zinc and iron concentrations were developed for utilizing in marker-assisted breeding and biofortification of wheat grain in breeding programs.