scholarly journals Ionic liquids as boundary additives in water-based and PAO lubricants

Friction ◽  
2021 ◽  
Author(s):  
Wahyu Wijanarko ◽  
Hamid Khanmohammadi ◽  
Nuria Espallargas

AbstractIonic liquids have been widely discussed as potential lubricants, however, their properties make them also very good potential candidates as lubricant additives (e.g., friction modifiers and anti-wear). In this work, the tribological study of two ionic liquids (tributylmethylphosphonium dimethylphosphate (PP), and 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate (BMP)) as lubricant additives has been performed on stainless steel (AISI 316L) exposed to polar (water-glycol) and non-polar (polyalphaolefin) based lubricants under boundary lubricating conditions. The performance of these ionic liquids as lubricant additives has been compared to a classical organic friction modifier (dodecanoic acid (C12)). The water-glycol lubricant formulated with the two ionic liquids showed friction values higher than the same base lubricant formulated with dodecanoic acid, however, opposite results were observed for polyalphaolefin (PAO). A detailed surface chemical analysis using X-ray photoelectron spectroscopy (XPS) revealed differences in the passive/tribofilm thickness and chemical composition of the stainless steel surface tested in all lubricants. In the case of the polar lubricant additivated with ionic liquids, the tribochemical reaction accompanied by a tribocorrosion process led to the formation of an unstable passive/tribofilm resulting in high friction and wear. However, in the absence of tribocorrosion process (polyalphaolefin base lubricant), the tribochemical reaction led to the formation of a stable passive/tribofilm resulting in low friction and wear. A detailed surface and subsurface investigation of the microstructure using scanning electron microscopy equipped with a focused ion beam (SEM-FIB) showed that high wear rates resulted in thicker recrystallization region under the wear track surface. Among all lubricant additives tested in this work, BMP in non-polar lubricant media showed the best tribological performance.

Coatings ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 713 ◽  
Author(s):  
Hong Guo ◽  
Angela Rina Adukure ◽  
Patricia Iglesias

Friction and wear of sliding surfaces are responsible for important energy losses and negative environmental effects. The use of environmentally friendly and cost-effective protic ionic liquids as neat lubricants and lubricant additives has the potential to increase the efficiency and durability of mechanical components without increasing the environmental damage. In this work, three halogen-free protic ionic liquids with increasing extent of ionicity, 2-hydroxyethylammonium 2-ethylhexanoate, 2-hydroxymethylammonium 2-ethylhexancate, and 2-hydroxydimethylammonium 2-ethylhexanoate, were synthesized and studied as neat lubricants and additives to a biodegradable oil in a steel–steel contact. The results show that the use of any protic ionic liquid as a neat lubricant or lubricant additive reduced friction and wear with respect to the biodegradable oil. The ionic liquid with the lowest ionicity reached the highest wear reduction. The one possessing the highest ionicity presented the poorest friction and wear behaviors as a neat lubricant, probably due to the more ionic nature of this liquid, which promoted tribocorrosion reactions on the steel surface. This ionic liquid performed better as an additive, showing that a small addition of this liquid in a biodegradable oil is enough to form protective layers on steel surfaces. However, it is not enough to accelerate the wear process with detrimental tribocorrosion reactions.


Wear ◽  
2010 ◽  
Vol 269 (1-2) ◽  
pp. 118-124 ◽  
Author(s):  
Akihito Suzuki ◽  
Yusuke Aiyama ◽  
Maiko Tokoro ◽  
Hidetoshi Sekiguchi ◽  
Masabumi Masuko

Author(s):  
A. E. Jimenez ◽  
M. D. Bermudez ◽  
P. Iglesias ◽  
F. J. Carrion ◽  
G. Martinez-Nicolas

A series of seven room-temperature ionic liquids (IL) have been studied as neat and 1 wt% base oil additives in the lubrication of steel and aluminum contacts under increasing sliding speed, normal load and temperature. IL used as neat lubricants can produce, depending on the composition, tribochemical processes at the aluminum-steel interface associated with an increase in friction coefficients and wear rates. When IL are used as 1 wt% additives, surfaces interactions can give friction and wear values lower than those obtained for the neat IL. The lubricating performance of the additives is more dependent on contact conditions than on composition.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Jinlong Li ◽  
Feng Zhou ◽  
Dapeng Feng ◽  
Yanqiu Xia ◽  
Weimin Liu

A series of new aryloxycyclophosphazene derivatives substituted with imidazolium ionic liquids was synthesized. Their tribological properties were investigated on an Optimol SRV IV oscillating friction and wear tester in ambient condition. An electric field was imposed between the ball and disk to monitor the tribochemical reaction by means of “contact resistance.” These ionic liquids substituted cyclophosphazene derivatives present lower friction coefficient and wear volume loss than tetrakis-(3-trifluoromethylphenoxy)-bis(4-fluorophenoxy)cyclotriphosphazene. The polarity of ionic liquids is believed to provide strong adsorption to contact surfaces and can form a boundary lubricating film leading to friction and wear reductions. Introducing the ionic liquids to cyclophosphazene may be a new method to improve the tribological properties of cyclophosphazene derivatives.


Author(s):  
Hong Guo ◽  
Rui Liu ◽  
Alfonso Fuentes-Aznar ◽  
Patricia Iglesias Victoria

The lubricating ability of one halogen-free and one halogen-containing phosphonium-based ionic liquids are investigated as neat lubricants, lubricant additives and thin lubricant layers in steel-steel contact. The use of the ionic liquids in any of the three lubricating methods reduced friction and wear compared to a base mineral oil. The halogen-free ionic liquid outperformed the halogen-containing ionic liquid in the three methods of lubrication. The highest friction and wear reduction were obtained when ionic liquids were used as neat lubricants. Under this condition, friction reductions of 37.21% and 25.73 %, and wear reduction of 47.12% and 41.18% compared to the based mineral oil were obtained for the halogen-free and halogen-containing ionic liquids respectively. The wear mechanisms and surface interactions are discussed in terms of ionic liquid-metal surface interactions from optical and SEM images and EDS analysis.


2014 ◽  
Vol 592-594 ◽  
pp. 1346-1351 ◽  
Author(s):  
Rakesh K. Rajan ◽  
Hemant Kumar ◽  
Shaju K. Albert ◽  
T.R. Vijayaram

Present work aimed at investigating the friction and wear of martensitic stainless steel of grade 410. This steel is used in nuclear industry for various moving components due to its high strength and moderate corrosion resistance. Properties of this material depend upon the heat treatment to which subjected to. The wear tests by sliding were performed on a pin on disk apparatus whose pin is in normalized and tempered condition. The counter face disc was machined from EN24 steel of high hardness in nature. The AISI 410 stainless steel wear rates were evaluated using Pin-on Disc Tribometer at various load and sliding speed. The worn pins were investigated by using scanning electron microscopy and surface profilometer.


Author(s):  
Hong Guo ◽  
Patricia Iglesias

Abstract Around 23% of the world’s energy consumption results from rubbing contacts, in which 20% is used to overcome friction and 3% is due to wear and the consequent failure. The implementation of lubricants and effective lubricant additives are indispensable to reduce friction and wear of rubbing materials. Protic Ionic Liquids (PILs), which are easily obtained by proton transfer from a Brønsted acid to a Brønsted base, have shown great potential to be used as lubricants due to their structures and tunable properties. In this study, two kinds of novel PILs, bis(2-hydroxyethylammonium) succinate (DSu) and tri-[bis(2-hydroxyethylammonium)] citrate (DCi), were synthesized and tested as lubricant additives. The tribological behavior of the two PILs is studied as additives in 1 wt. % to a base synthetic lubricant (PAO) for steel-steel contact under different temperatures (room temperature and 100°C) and normal loads (3 N and 4 N) using a ball-on-flat reciprocating tribometer. When 1 wt. % of any PILs is added into PAO, friction is reduced compared to that with neat PAO at all temperatures and loads studied, and good anti-wear performance is also obtained under the higher temperature studied. Particularly, 1 wt. % DCi +PAO shows the best high-temperature tribological behavior under 4N, with friction and wear reductions of 33% and 35%, respectively.


Sign in / Sign up

Export Citation Format

Share Document