scholarly journals Eco-Friendly Cutting Fluids in Minimum Quantity Lubrication Assisted Machining: A Review on the Perception of Sustainable Manufacturing

Author(s):  
Binayak Sen ◽  
Mozammel Mia ◽  
G. M. Krolczyk ◽  
Uttam Kumar Mandal ◽  
Sankar Prasad Mondal

AbstractIn modern days, the conception of sustainability has progressively advanced and has begun receiving global interest. Thus, sustainability is an imperative idea in modern research. Considering the recent trend, this review paper presents a summary of the previously published research articles on minimum quantity lubrication (MQL) assisted machining. The requirement to stir towards sustainability motivated the researchers to revise the effects of substitute lubrication methods on the machining. Conventional lubri-cooling agents are still extensively employed when machining of engineering alloys, but the majority of the recent papers have depicted that the utilization of vegetable oil, nanofluids, and nanoplatelets in MQL system confers superior machining performances as compared to conventional lubrication technology. In actual, the definite principle of this manuscript is to re-examine modern advancements in the MQL technique and also explore the benefits of the vegetable oil and nanofluid as a lubricant. In brief, this paper is a testimony to the advancing capabilities of eco-friendly MQL technique which is a viable alternative to the flood lubrication technology, and the outcomes of this review work can be contemplated as a movement towards sustainable machining.

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1931
Author(s):  
Anshuman Das ◽  
Smita Padhan ◽  
Sudhansu Ranjan Das ◽  
Mohammad S. Alsoufi ◽  
Ahmed Mohamed Mahmoud Ibrahim ◽  
...  

Sustainable manufacturing has received great attention in the last few decades for obtaining high quality products with minimal costs and minimal negative impacts on environment. Sustainable machining is one of the main sustainable manufacturing branches, which is concerned with improving environmental conditions, reducing power consumption, and minimizing machining costs. In the current study, the performance of three sustainable machining techniques, namely dry, compressed air cooling, and minimum quantity lubrication, is compared with conventional flood machining during the turning of austenitic stainless steel (Nitronic 60). This alloy is widely used in aerospace engine components, medical applications, gas power industries, and nuclear power systems due to its superior mechanical and thermal properties. Machining was performed using SiAlON ceramic tool with four different cutting speeds, feeds and a constant depth of cut. Consequently, various chip characteristics such as chip morphology, chip thickness, saw tooth distance and chip segmentation frequency were analyzed with both optical and scanning electron microscopes. Performance assessment was performed under the investigated cutting conditions. Our results show that the tool life under MQL machining are 138%, 72%, and 11% greater than dry, compressed air, and flooded conditions, respectively. The use of SiAlON ceramic tool results is more economically viable under the MQL environment as the overall machining cost per component is lower ($0.27) as compared to dry ($0.36), compressed air ($0.31), and flooded ($0.29) machining conditions. The minimum quantity lubrication technique outperformed the other investigated techniques in terms of eco-friendly aspects, economic feasibility, and technical viability to improve sustainability.


2021 ◽  
pp. 269-292
Author(s):  
Rahul Anand ◽  
Ankush Raina ◽  
Mir Irfan Ul Haq ◽  
Mohd Fadzli ◽  
Bin Abdollah

Author(s):  
Trung Kien Nguyen ◽  
Kyung-Hee Park ◽  
Patrick Y. Kwon

This paper studies the effect of various lamellar-type solid lubricants (graphite and hBN) that can be mixed into a lubricant to potentially improve the machinability of minimum quantity lubrication (MQL) machining. To examine this, the solid lubricants are classified into particles and platelets based on their aspect ratios as well as their respective sizes. In particular, the particles are classified into microparticles and nanoparticles based on their dimensions (average radius), while the platelets were classified, based on their average thickness, into two types: the “microplatelets” if the thickness is typically up to few tens of microns and the “nanoplatelets” if the thickness is well below a tenth of a micron (even down to few nanometers). Our previous work has shown that the mixture of an extremely small amount (about 0.1 wt. %) of the graphitic nanoplatelets and vegetable oil immensely enhanced the machinability of MQL machining. In this paper, many lubricants, each mixed with a particular variety of nano- or micro-platelets or one type of nanoparticles, were studied to reveal the effect of each solid lubricant on MQL machining. Prior to the MQL machining experiment, the tribological test was conducted to show that the nanoplatelets are overall more effective than the microplatelets and nanoparticles in minimizing wear despite of no significant difference in friction compared to pure vegetable oil. Consequently, the MQL ball-milling experiment was conducted with AISI 1045 steel yielding a similar trend. Surprisingly, the oil mixtures with the microplatelets increased flank wear, even compared to the pure oil lubricant when the tools with the smooth surface were used. Thus, the nanoscale thickness of these platelets is a critical requirement for the solid lubricants in enhancing the MQL machining process. However, maintaining the nanoscale thickness is not critical with the tools with the rough surfaces in enhancing the MQL process. Therefore, it is concluded that finding an optimum solid lubricant depends on not only the characteristics (material as well as morphology) of solid lubricants but also the characteristic of tool surface.


Author(s):  
Trung Kien Nguyen ◽  
Patrick Y. Kwon ◽  
Kyung-Hee Park

The lamellar-type solid lubricants are readily available in a form of platelets. The diameter and thickness of these platelets are typically up to tens of microns and few microns, respectively, which are classified as micro-platelets. Some of these platelets are also available as nano-platelets whose thickness is well below a micron (even to few nanometers). In the previous work, the vegetable oil mixed with nano-platelets was enormously effective for Minimum Quantity Lubrication (MQL) machining. Clearly, the micro-platelets are not as inexpensive. In addition, the mixtures with the micro-platelets are not as stable as those with the nano-platelets. This paper intends to find the effect of the thickness differential on these platelets in MQL machining. The tribometer test shows that the nano-platelets are much more effective than the micro-platelets in reducing wear without changing the friction. With the MQL ball mill experiment, the micro-platelets present in MQL oil increased the tool wear, even compared to the traditional MQL with pure oil only. Thus, the thickness of the nano-platelets holds an important characteristic to enhance MQL-based machining.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5162
Author(s):  
Kashif Ishfaq ◽  
Irfan Anjum ◽  
Catalin Iulian Pruncu ◽  
Muhammad Amjad ◽  
M. Saravana Kumar ◽  
...  

Machining operations are very common for the production of auto parts, i.e., connecting rods, crankshafts, etc. In machining, the use of cutting oil is very necessary, but it leads to higher machining costs and environmental problems. About 17% of the cost of any product is associated with cutting fluid, and about 80% of skin diseases are due to mist and fumes generated by cutting oils. Environmental legislation and operators’ safety demand the minimal use of cutting fluid and proper disposal of used cutting oil. The disposal cost is huge, about two times higher than the machining cost. To improve occupational health and safety and the reduction of product costs, companies are moving towards sustainable manufacturing. Therefore, this review article emphasizes the sustainable machining aspects of steel by employing techniques that require the minimal use of cutting oils, i.e., minimum quantity lubrication, and other efficient techniques like cryogenic cooling, dry cutting, solid lubricants, air/vapor/gas cooling, and cryogenic treatment. Cryogenic treatment on tools and the use of vegetable oils or biodegradable oils instead of mineral oils are used as primary techniques to enhance the overall part quality, which leads to longer tool life with no negative impacts on the environment. To further help the manufacturing community in progressing towards industry 4.0 and obtaining net-zero emissions, in this paper, we present a comprehensive review of the recent, state of the art sustainable techniques used for machining steel materials/components by which the industry can massively improve their product quality and production.


Sign in / Sign up

Export Citation Format

Share Document