Simulation of extreme event-based rainfall–runoff process of an urban catchment area using HEC-HMS

2019 ◽  
Vol 5 (4) ◽  
pp. 1867-1881 ◽  
Author(s):  
Surendar Natarajan ◽  
Nisha Radhakrishnan
2020 ◽  
Vol 15 (3) ◽  
pp. 184-195
Author(s):  
Réka Csicsaiová ◽  
Ivana Marko ◽  
Jaroslav Hrudka ◽  
Ivona Škultétyová ◽  
Štefan Stanko

The aim of the study is to assess the hydraulic capacity of the sewer network and sewer collector recovery in the urban catchment area of Trnava.The analysis focuses on the evaluation of situations with different precipitation frequencies. Elaboration consists of modeling the current state of the assessed sewer collector B and subsequent loading of this collector by several block rainfalls. Based on the results of the analysis, the recovery of the sewer network proposed.


1992 ◽  
Vol 23 (4) ◽  
pp. 245-256 ◽  
Author(s):  
Å. Spångberg ◽  
J. Niemczynowicz

The paper describes a measurement project aiming at delivering water quality data with the very fine time resolution necessary to discover deterministic elements of the complex process of pollution wash-off from an urban surface. Measurements of rainfall, runoff, turbidity, pH, conductivity and temperature with 10 sec time resolution were performed on a simple urban catchment, i.e. a single impermeable 270 m2 surface drained by one inlet. The paper presents data collection and some preliminary results.


1998 ◽  
Vol 37 (1) ◽  
pp. 251-257 ◽  
Author(s):  
Torben Larsen ◽  
Kirsten Broch ◽  
Margit Riis Andersen

The paper describes the results of measurements from a 2 year period on a 95 hectare urban catchment in Aalborg, Denmark. The results of the rain/discharge measurements include 160 storm events corresponding to an accumulated rain depth of totally 753 mm. The water quality measurements include 15 events with time series of concentration of SS, COD, BOD, total nitrogen and total phosphorus. The quality parameters showed significant first flush effects. The paper discusses whether either the event average concentration or the accumulated event mass is the most appropriate way to characterize the quality of the outflow.


Hydrology ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 110
Author(s):  
Carlos Martínez ◽  
Zoran Vojinovic ◽  
Arlex Sanchez

This paper presents the performance quantification of different green-grey infrastructures, including rainfall-runoff and infiltration processes, on the overland flow and its connection with a sewer system. The present study suggests three main components to form the structure of the proposed model-based assessment. The first two components provide the optimal number of green infrastructure (GI) practices allocated in an urban catchment and optimal grey infrastructures, such as pipe and storage tank sizing. The third component evaluates selected combined green-grey infrastructures based on rainfall-runoff and infiltration computation in a 2D model domain. This framework was applied in an urban catchment in Dhaka City (Bangladesh) where different green-grey infrastructures were evaluated in relation to flood damage and investment costs. These practices implemented separately have an impact on the reduction of damage and investment costs. However, their combination has been shown to be the best action to follow. Finally, it was proved that including rainfall-runoff and infiltration processes, along with the representation of GI within a 2D model domain, enhances the analysis of the optimal combination of infrastructures, which in turn allows the drainage system to be assessed holistically.


2013 ◽  
Vol 13 (3) ◽  
pp. 583-596 ◽  
Author(s):  
M. Coustau ◽  
S. Ricci ◽  
V. Borrell-Estupina ◽  
C. Bouvier ◽  
O. Thual

Abstract. Mediterranean catchments in southern France are threatened by potentially devastating fast floods which are difficult to anticipate. In order to improve the skill of rainfall-runoff models in predicting such flash floods, hydrologists use data assimilation techniques to provide real-time updates of the model using observational data. This approach seeks to reduce the uncertainties present in different components of the hydrological model (forcing, parameters or state variables) in order to minimize the error in simulated discharges. This article presents a data assimilation procedure, the best linear unbiased estimator (BLUE), used with the goal of improving the peak discharge predictions generated by an event-based hydrological model Soil Conservation Service lag and route (SCS-LR). For a given prediction date, selected model inputs are corrected by assimilating discharge data observed at the basin outlet. This study is conducted on the Lez Mediterranean basin in southern France. The key objectives of this article are (i) to select the parameter(s) which allow for the most efficient and reliable correction of the simulated discharges, (ii) to demonstrate the impact of the correction of the initial condition upon simulated discharges, and (iii) to identify and understand conditions in which this technique fails to improve the forecast skill. The correction of the initial moisture deficit of the soil reservoir proves to be the most efficient control parameter for adjusting the peak discharge. Using data assimilation, this correction leads to an average of 12% improvement in the flood peak magnitude forecast in 75% of cases. The investigation of the other 25% of cases points out a number of precautions for the appropriate use of this data assimilation procedure.


2012 ◽  
Vol 57 (3) ◽  
pp. 445-459 ◽  
Author(s):  
M.L. Rodríguez-Blanco ◽  
M.M. Taboada-Castro ◽  
M.T. Taboada-Castro

Sign in / Sign up

Export Citation Format

Share Document