hydrologic model
Recently Published Documents


TOTAL DOCUMENTS

1253
(FIVE YEARS 386)

H-INDEX

68
(FIVE YEARS 9)

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 233
Author(s):  
Elia M. Tapia-Villaseñor ◽  
Eylon Shamir ◽  
Mary-Belle Cruz-Ayala ◽  
Sharon B. Megdal

The impact of climate uncertainties is already evident in the border communities of the United States and Mexico. This semi-arid to arid border region has faced increased vulnerability to water scarcity, propelled by droughts, warming atmosphere, population growth, ecosystem sensitivity, and institutional asymmetries between the two countries. In this study, we assessed the annual water withdrawal, which is essential for maintaining long-term sustainable conditions in the Santa Cruz River Aquifer in Mexico, which is part of the U.S.–Mexico Transboundary Santa Cruz Aquifer. For this assessment, we developed a water balance model that accounts for the water fluxes into and out of the aquifer’s basin. A central component of this model is a hydrologic model that uses precipitation and evapotranspiration demand as input to simulate the streamflow into and out of the basin, natural recharge, soil moisture, and actual evapotranspiration. Based on the precipitation record for the period 1954–2020, we found that the amount of groundwater withdrawal that maintains sustainable conditions is 23.3 MCM/year. However, the record is clearly divided into two periods: a wet period, 1965–1993, in which the cumulative surplus in the basin reached ~380 MCM by 1993, and a dry period, 1994–2020, in which the cumulative surplus had been completely depleted. Looking at a balanced annual groundwater withdrawal for a moving average of 20-year intervals, we found the sustainable groundwater withdrawal to decline from a maximum of 36.4 MCM/year in 1993 to less than 8 MCM/year in 2020. This study underscores the urgency for adjusted water resources management that considers the large inter-annual climate variability in the region.


Author(s):  
Adam Schreiner-McGraw ◽  
Hoori Ajami ◽  
Ray Anderson ◽  
Dong Wang

Accurate simulation of plant water use across agricultural ecosystems is essential for various applications, including precision agriculture, quantifying groundwater recharge, and optimizing irrigation rates. Previous approaches to integrating plant water use data into hydrologic models have relied on evapotranspiration (ET) observations. Recently, the flux variance similarity approach has been developed to partition ET to transpiration (T) and evaporation, providing an opportunity to use T data to parameterize models. To explore the value of T/ET data in improving hydrologic model performance, we examined multiple approaches to incorporate these observations for vegetation parameterization. We used ET observations from 5 eddy covariance towers located in the San Joaquin Valley, California, to parameterize orchard crops in an integrated land surface – groundwater model. We find that a simple approach of selecting the best parameter sets based on ET and T performance metrics works best at these study sites. Selecting parameters based on performance relative to observed ET creates an uncertainty of 27% relative to the observed value. When parameters are selected using both T and ET data, this uncertainty drops to 24%. Similarly, the uncertainty in potential groundwater recharge drops from 63% to 58% when parameters are selected with ET or T and ET data, respectively. Additionally, using crop type parameters results in similar levels of simulated ET as using site-specific parameters. Different irrigation schemes create high amounts of uncertainty and highlight the need for accurate estimates of irrigation when performing water budget studies.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 191
Author(s):  
Shen Chiang ◽  
Chih-Hsin Chang ◽  
Wei-Bo Chen

To better understand the effect and constraint of different data lengths on the data-driven model training for the rainfall-runoff simulation, the support vector regression (SVR) approach was applied to the data-driven model as the core algorithm in the present study. Various features selection strategies and different data lengths were employed in the training phase of the model. The validated results of the SVR were compared with the rainfall-runoff simulation derived from a physically based hydrologic model, the Hydrologic Modeling System (HEC-HMS). The HEC-HMS was considered a conventional approach and was also calibrated with a dataset period identical to the SVR. Our results showed that the SVR and HEC-HMS models could be adopted for short and long periods of rainfall-runoff simulation. However, the SVR model estimated the rainfall-runoff relationship reasonably well even if the observational data of one year or one typhoon event was used. In contrast, the HEC-HMS model needed more parameter optimization and inference processes to achieve the same performance level as the SVR model. Overall, the SVR model was superior to the HEC-HMS model in the performance of the rainfall-runoff simulation.


2022 ◽  
Author(s):  
Stephen Adams ◽  
Brian Bledsoe ◽  
Eric Stein

Abstract. Environmental streamflow management can improve the ecological health of streams by returning modified flows to more natural conditions. The Ecological Limits of Hydrologic Alteration (ELOHA) framework for developing regional environmental flow criteria has been implemented to reverse hydromodification across the heterogenous region of coastal southern California (So. CA) by focusing on two elements of the flow regime: streamflow permanence and flashiness. Within ELOHA, classification groups streams by hydrologic and geomorphic similarity to stratify flow-ecology relationships. Analogous grouping techniques are used by hydrologic modelers to facilitate streamflow prediction in ungaged basins (PUB) through regionalization. Most watersheds, including those needed for stream classification and environmental flow development, are ungaged. Furthermore, So. CA is a highly heterogeneous region spanning a gradient of urbanization, which presents a challenge for regionalizing ungaged basins. In this study, we develop a novel classification technique for PUB modeling that uses an inductive approach to group regional streams by modeled hydrologic similarity followed by deductively determining class membership with hydrologic model errors and watershed metrics. As a new type of classification, this “Hydrologic Model-based Classification” (HMC) prioritizes modeling accuracy, which in turn provides a means to improve model predictions in ungaged basins, while complementing traditional classifications and improving environmental flow management. HMC is developed by calibrating a regional catalog of process-based rainfall-runoff models, quantifying the hydrologic reciprocity of calibrated parameters that would be unknown in ungaged basins, and grouping sites according to hydrologic and physical similarity. HMC was applied to 25 USGS streamflow gages in the south coast region of California and was compared to other hybrid PUB approaches combining inductive and deductive classification. Using an Average Cluster Error metric, results show HMC provided the most hydrologically similar groups according to calibrated parameter reciprocity. Hydrologic Model-based Classification is relatively complex and time-consuming to implement, but it shows potential for advancing ungaged basin management. This study demonstrates the benefits of thorough stream classification using multiple approaches, and suggests that Hydrologic Model-based Classification has advantages for PUB and building the hydrologic foundation for environmental flow management.


2021 ◽  
Vol 3 ◽  
Author(s):  
Daria B. Kluver ◽  
Wendy Robertson

Fundamental differences in the nature of climate and hydrologic models make coupling of future climate projections to models of watershed hydrology challenging. This study uses the NCAR Weather Research and Forecast model (WRF) to dynamically downscale climate simulations over the Saginaw Bay Watershed, MI and prepare the results for input into semi-distributed hydrologic models. One realization of the bias-corrected NCAR CESM1 model's RCP 8.5 climate scenario is dynamically downscaled at a spatial resolution of 3 km by 3 km for the end of the twenty-first century and validated based on a downscaled run for the end of the twentieth century in comparison to ASOS and NWS COOP stations. Bias-correction is conducted using Quantile Mapping to correct daily maximum and minimum temperature, precipitation, and relative humidity for use in future hydrologic model experiments. In the Saginaw Bay Watershed the end of the twenty-first century is projected to see maximum and minimum average daily temperatures warming by 5.7 and 6.3°C respectively. Precipitation characteristics over the watershed show an increase in mean annual precipitation (average of +14.3 mm over the watershed), mainly due to increases in precipitation intensity (average of +0.3 mm per precipitation day) despite a decrease in frequency of −10.7 days per year. The projected changes have substantial implications for watershed processes including flood prediction, erosion, mobilization of non-point source and legacy contaminants, and evapotranspirative demand, among others. We present these results in the context of usefulness of the downscaled and bias corrected data for semi-distributed hydrologic modeling.


MAUSAM ◽  
2021 ◽  
Vol 65 (1) ◽  
pp. 49-56
Author(s):  
S.JOSEPHINE VANAJA ◽  
B.V. MUDGAL ◽  
S.B. THAMPI

Precipitation is a significant input for hydrologic models; so, it needs to be quantified precisely. The measurement with rain gauges gives the rainfall at a particular location, whereas the radar obtains instantaneous snapshots of electromagnetic backscatter from rain volumes that are then converted into rainfall via algorithms. It has been proved that the radar measurement of areal rainfall can outperform rain gauge network measurements, especially in remote areas where rain gauges are sparse, and remotely sensed satellite rainfall data are too inaccurate. The research focuses on a technique to improve rainfall-runoff modeling based on radar derived rainfall data for Adyar watershed, Chennai, India. A hydrologic model called ‘Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS)’ is used for simulating rainfall-runoff processes. CARTOSAT 30 m DEM is used for watershed delineation using HEC-GeoHMS. The Adyar watershed is within 100 km radius circle from the Doppler Weather Radar station, hence it has been chosen as the study area. The cyclonic storm Jal event from 4-8 November, 2010 period is selected for the study. The data for this period are collected from the Statistical Department, and the Cyclone Detection Radar Centre, Chennai, India. The results show that the runoff is over predicted using calibrated Doppler radar data in comparison with the point rainfall from rain gauge stations.


Author(s):  
T. Trinh ◽  
V. T. Nguyen ◽  
N. Do ◽  
K. Carr ◽  
D. H. Tran ◽  
...  

Abstract The spatial and temporal availability and reliability of hydrological data are substantial contribution to the accuracy of watershed modeling; unfortunately, such data requirements are challenging and perhaps impossible in many regions of the world. In this study, hydrological conditions are simulated using the hydrologic model-WEHY, whose data input are obtained from a hybrid downscaling technique to provide reliable and high temporal and spatial resolution hydrological data. The hybrid downscaling technique is coupled a hydroclimate and a machine learning models; wherein the global atmospheric reanalysis data, including ERA-Interim, ERA-20C, and CFSR are used for initial and boundary conditions of dynamical downscaling utilizing the Weather Research and Forecasting model (WRF). The machine learning model (ANN) then follows to further downscale the WRF outputs to a finer resolution over the studied watershed. An application of the combination of mentioned techniques is applied to the third-largest river basin in Vietnam, the Sai Gon–Dong Nai Rivers Basin. The validation of hybrid model is in the ‘satisfactory’ range. After the estimation of geomorphology and land cover within the watershed, WEHY's calibration and validation are performed based on observed rainfall data. The simulation results matched well with flow observation data with respect to magnitude for both the rising and recession time segments. In comparison among the three selected reanalysis data sets, the best calibration and validation results were obtained from the CFSR data set. These results are closer to the observation data than those using only the dynamic downscaling technique in combination with the WEHY model.


2021 ◽  
Author(s):  
Navid Jadidoleslam ◽  
Brian K Hornbuckle ◽  
Witold F. Krajewski ◽  
Ricardo Mantilla ◽  
Michael H. Cosh

L-band microwave satellite missions provide soil moisture information potentially useful for streamflow and hence flood predictions. However, these observations are also sensitive to the presence of vegetation that makes satellite soil moisture estimations prone to errors. In this study, the authors evaluate satellite soil moisture estimations from SMAP (Soil Moisture Active Passive) and SMOS (Soil Moisture Ocean Salinity), and two distributed hydrologic models with measurements from in~situ sensors in the Corn Belt state of Iowa, a region dominated by annual row crops of corn and soybean. First, the authors compare model and satellite soil moisture products across Iowa using in~situ data for more than 30 stations. Then, they compare satellite soil moisture products with state-wide model-based fields to identify regions of low and high agreement. Finally, the authors analyze and explain the resulting spatial patterns with MODIS (Moderate Resolution Imaging Spectroradiometer) vegetation indices and SMAP vegetation optical depth. The results indicate that satellite soil moisture estimations are drier than those provided by the hydrologic model and the spatial bias depends on the intensity of row-crop agriculture. The work highlights the importance of developing a revised SMAP algorithm for regions of intensive row-crop agriculture to increase SMAP utility in the real-time streamflow predictions.


Sign in / Sign up

Export Citation Format

Share Document