Approximate Controllability of Fractional Stochastic Differential Equations Driven by Fractional Brownian Motion

2019 ◽  
Vol 43 (3) ◽  
pp. 2605-2626
Author(s):  
Jingyun Lv ◽  
Xiaoyuan Yang
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Elhoussain Arhrrabi ◽  
M’hamed Elomari ◽  
Said Melliani ◽  
Lalla Saadia Chadli

The existence, uniqueness, and stability of solutions to fuzzy fractional stochastic differential equations (FFSDEs) driven by a fractional Brownian motion (fBm) with the Lipschitzian condition are investigated. Finally, we investigate the exponential stability of solutions.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Pengju Duan ◽  
Hao Li ◽  
Jie Li ◽  
Pei Zhang

In this article, we investigate a class of Caputo fractional stochastic differential equations driven by fractional Brownian motion with delays. Under some novel assumptions, the averaging principle of the system is obtained. Finally, we give an example to show that the solution of Caputo fractional stochastic differential equations driven by fractional Brownian motion with delays converges to the corresponding averaged stochastic differential equation.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Hossein Jafari ◽  
Marek T. Malinowski ◽  
M. J. Ebadi

AbstractIn this paper, we consider fuzzy stochastic differential equations (FSDEs) driven by fractional Brownian motion (fBm). These equations can be applied in hybrid real-world systems, including randomness, fuzziness and long-range dependence. Under some assumptions on the coefficients, we follow an approximation method to the fractional stochastic integral to study the existence and uniqueness of the solutions. As an example, in financial models, we obtain the solution for an equation with linear coefficients.


Sign in / Sign up

Export Citation Format

Share Document