Advances in Difference Equations
Latest Publications


TOTAL DOCUMENTS

4877
(FIVE YEARS 1735)

H-INDEX

43
(FIVE YEARS 20)

Published By Springer (Biomed Central Ltd.)

1687-1847, 1687-1839

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Qinrui Dai

AbstractThe mathematical model has become an important means to study tumor treatment and has developed with the discovery of medical phenomena. In this paper, we establish a delayed tumor model, in which the Allee effect is considered. Different from the previous similar tumor models, this model is mainly studied from the point of view of stability and co-dimension two bifurcations, and some nontrivial phenomena and conclusions are obtained. By calculation, there are at most two positive equilibria in the system, and their stability is investigated. Based on these, we find that the system undergoes Bautin bifurcation, zero-Hopf bifurcation, and Hopf–Hopf bifurcation with time delay and tumor growth rate as bifurcation parameters. The interesting thing is that there is a Zero-Hopf bifurcation, which is not common in tumor models, making abundant dynamic phenomena appear in the system. By using the bifurcation theory of functional differential equations, we calculate the normal form of these Co-dimension two bifurcations. Finally, with the aid of MATLAB package DDE-BIFTOOL, some numerical simulations have been performed to support our theoretical results. In particular, we obtain the bifurcation diagram of the system in the two parameter plane and divide its regions according to the bifurcation curves. Meanwhile, the phenomena of multistability and periodic coexistence of some regions can be also demonstrated. Combined with the simulation results, we can know that when the tumor growth rate and the delay of immune cell apoptosis are small, the tumor may tend to be stable, and vice versa.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Danh Hua Quoc Nam

AbstractThe main objective of the paper is to study the final model for the Kirchhoff-type parabolic system. Such type problems have many applications in physical and biological phenomena. Under some smoothness of the final Cauchy data, we prove that the problem has a unique mild solution. The main tool is Banach’s fixed point theorem. We also consider the non-well-posed problem in the Hadamard sense. Finally, we apply truncation method to regularize our problem. The paper is motivated by the work of Tuan, Nam, and Nhat [Comput. Math. Appl. 77(1):15–33, 2019].


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Bayram Sözbir ◽  
Selma Altundağ

AbstractIn this paper, we introduce the concept of lacunary statistical boundedness of Δ-measurable real-valued functions on an arbitrary time scale. We also give the relations between statistical boundedness and lacunary statistical boundedness on time scales.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Tariq Mahmood ◽  
Mei Sun

AbstractThis paper considers the initial-boundary value problem of the one-dimensional full compressible nematic liquid crystal flow problem. The initial density is allowed to touch vacuum, and the viscous and heat conductivity coefficients are kept to be positive constants. Global existence of strong solutions is established for any $H^{2}$ H 2 initial data in the Lagrangian flow map coordinate, which holds for both vacuum and non-vacuum case. The key difficulty is caused by the lack of the positive lower bound of the density. To overcome such difficulty, it is observed that the ratio of $\frac{\rho _{0(y)}}{\rho (t,y)}$ ρ 0 ( y ) ρ ( t , y ) is proportional to the time integral of the upper bound of temperature and vector director field, along the trajectory. Density weighted Sobolev type inequalities are constructed for both temperature and director field in terms of $\frac{\rho _{0(y)}}{\rho (t,y)}$ ρ 0 ( y ) ρ ( t , y ) and small dependence on their dissipation estimates. Besides this, to deal with cross terms arising due to liquid crystal flow, higher order priori estimates are established by using effective viscous flux.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yakun Wang ◽  
Fanwei Meng ◽  
Juan Gu

AbstractOur objective in this paper is to study the oscillatory and asymptotic behavior of the solutions of third-order neutral differential equations with damping and distributed deviating arguments. New oscillation criteria are established, which are based on a refinement generalized Riccati transformation. An important tool for this investigation is the integral averaging technique. Moreover, we provide an example to illustrate the main results.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Sreenivasulu Ayyalappagari ◽  
Venkata Appa Rao Bhogapurapu

AbstractIn this paper, we establish sufficient conditions for various stability aspects of a nonlinear Volterra integro-dynamic matrix Sylvester system on time scales. We convert the nonlinear Volterra integro-dynamic matrix Sylvester system on time scale to an equivalent nonlinear Volterra integro-dynamic system on time scale using vectorization operator. Sufficient conditions are obtained to this system for stability, asymptotic stability, exponential stability, and strong stability. The obtained results include various stability aspects of the matrix Sylvester systems in continuous and discrete models.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Qi Quan ◽  
Wenyan Tang ◽  
Jianjun Jiao ◽  
Yuan Wang

AbstractIn this paper, we consider a new stage-structured population model with transient and nontransient impulsive effects in a polluted environment. By using the theories of impulsive differential equations, we obtain the globally asymptotically stable condition of a population-extinction solution; we also present the permanent condition for the investigated system. The results indicate that the nontransient and transient impulsive harvesting rate play important roles in system permanence. Finally, numerical analyses are carried out to illustrate the results. Our results provide effective methods for biological resource management in a polluted environment.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Reem Edwan ◽  
Shrideh Al-Omari ◽  
Mohammed Al-Smadi ◽  
Shaher Momani ◽  
Andreea Fulga

AbstractConvection and diffusion are two harmonious physical processes that transfer particles and physical quantities. This paper deals with a new aspect of solving the convection–diffusion equation in fractional order using the finite volume method and the finite difference method. In this context, we present an alternative way for estimating the space fractional derivative by utilizing the fractional Grünwald formula. The proposed methods are conditionally stable with second-order accuracy in space and first-order accuracy in time. Many comparisons are performed to display reliability and capability of the proposed methods. Furthermore, several results and conclusions are provided to indicate appropriateness of the finite volume method in solving the space fractional convection–diffusion equation compared with the finite difference method.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Nak Eun Cho ◽  
Oh Sang Kwon ◽  
Young Jae Sim

AbstractIn this paper, by using a technique of the first-order differential subordination, we find several sufficient conditions for an analytic function p such that $p(0)=1$ p ( 0 ) = 1 to satisfy $\operatorname{Re}\{ {\mathrm{e}}^{{\mathrm{i}}\beta } p(z) \} > \gamma $ Re { e i β p ( z ) } > γ or $| \arg \{p(z)-\gamma \} |<\delta $ | arg { p ( z ) − γ } | < δ for all $z\in \mathbb{D}$ z ∈ D , where $\beta \in (-\pi /2,\pi /2)$ β ∈ ( − π / 2 , π / 2 ) , $\gamma \in [0,\cos \beta )$ γ ∈ [ 0 , cos β ) , $\delta \in (0,1]$ δ ∈ ( 0 , 1 ] and $\mathbb{D}:=\{z\in \mathbb{C}:|z|<1 \}$ D : = { z ∈ C : | z | < 1 } . The results obtained here will be applied to find some conditions for spirallike functions and strongly starlike functions in $\mathbb{D}$ D .


Sign in / Sign up

Export Citation Format

Share Document