Enhancing the safety management of NATM using the tunnel seismic prediction method: a case study

2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Hong-Kee Tzou ◽  
Tai-Sheng Chu ◽  
Tai-Yi Liu
Author(s):  
Yu Zang ◽  
Wei Shangguan ◽  
Baigen Cai ◽  
Huasheng Wang ◽  
Michael. G. Pecht

2021 ◽  
Vol 13 (9) ◽  
pp. 5103
Author(s):  
Vincenzo Gallelli ◽  
Giusi Perri ◽  
Rosolino Vaiana

The European Union policy strategies on the sustainability of the transport system pursue the goals of maximizing safety and environmental benefits and reducing the severity and frequency of crashes, congestion, and pollutant emission rates. A common issue is the planning of the most effective solution for operational and safety management at intersections. In this study, an egg turbo roundabout is proposed as the alternative solution to a conventional roundabout in Southern Italy which suffers from traffic congestion. A comparative analysis is carried out using microsimulation techniques to investigate the safety effects and operational improvements of converting a traditional priority intersection into standard roundabout or turbo roundabout layout. In particular, the VISSIM software is used to explore the most relevant operational performance measures: queue length, travel times and delays. The lowest values of these measurements are recorded for the simulated turbo roundabout, thus making this scheme more appropriate in terms of operational performances. With regard to safety analysis, the Surrogate Safety Assessment Model (SSAM) is used to collect information on the predicted number of conflicts, the probability, and severity of the potential collisions. The results suggest that, for the specific case study, the safety levels of the standard roundabout and the turbo roundabout are approximately comparable.


2020 ◽  
Vol 12 (1) ◽  
pp. 1094-1104
Author(s):  
Nima Dastanboo ◽  
Xiao-Qing Li ◽  
Hamed Gharibdoost

AbstractIn deep tunnels with hydro-geological conditions, it is paramount to investigate the geological structure of the region before excavating a tunnel; otherwise, unanticipated accidents may cause serious damage and delay the project. The purpose of this study is to investigate the geological properties ahead of a tunnel face using electrical resistivity tomography (ERT) and tunnel seismic prediction (TSP) methods. During construction of the Nosoud Tunnel located in western Iran, ERT and TSP 303 methods were employed to predict geological conditions ahead of the tunnel face. In this article, the results of applying these methods are discussed. In this case, we have compared the results of the ERT method with those of the TSP 303 method. This work utilizes seismic methods and electrical tomography as two geophysical techniques are able to detect rock properties ahead of a tunnel face. This study shows that although the results of these two methods are in good agreement with each other, the results of TSP 303 are more accurate and higher quality. Also, we believe that using another geophysical method, in addition to TSP 303, could be helpful in making decisions in support of excavation, especially in complicated geological conditions.


Author(s):  
Ning Huan ◽  
Enjian Yao ◽  
Binbin Li

Recently, surges of passengers caused by large gatherings, temporary traffic control measures, or other abnormal events have frequently occurred in metro systems. From the standpoint of the operation managers, the available information about these outside events is incomplete or delayed. Unlike regular peaks of commuting, those unforeseen surges pose great challenges to emergency organization and safety management. This study aims to assist managers in monitoring passenger flow in an intelligent manner so as to react promptly. Compared with the high cost of deploying multisensors, the widely adopted automated fare collection (AFC) system provides an economical solution for inflow monitoring from the application point of view. In this paper, a comprehensive framework for the early warning mechanism is established, including four major phases: data acquisition, preprocessing, off-line modeling, and on-line detection. For each station, passengers’ tapping-on records are gathered in real time, to be further transformed into a dynamic time series of inflow volumes. Then, a sequence decomposition model is formulated to highlight the anomaly by removing its inherent disturbances. Furthermore, a novel hybrid anomaly detection method is developed to monitor the variation of passenger flow, in which the features of inflow patterns are fully considered. The proposed method is tested by a numerical experiment, along with a real-world case study of Guangzhou metro. The results show that, for most cases, the response time for detection is within 5 min, which makes the surge phenomenon observable at an early stage and reminds managers to make interventions appropriately.


Sign in / Sign up

Export Citation Format

Share Document