scholarly journals Analysis of Urban Heat Island and Heat Waves Using Sentinel-3 Images: a Study of Andalusian Cities in Spain

Author(s):  
David Hidalgo García

Abstract At present, understanding the synergies between the Surface Urban Heat Island (SUHI) phenomenon and extreme climatic events entailing high mortality, i.e., heat waves, is a great challenge that must be faced to improve the quality of life in urban zones. The implementation of new mitigation and resilience measures in cities would serve to lessen the effects of heat waves and the economic cost they entail. In this research, the Land Surface Temperature (LST) and the SUHI were determined through Sentinel-3A and 3B images of the eight capitals of Andalusia (southern Spain) during the months of July and August of years 2019 and 2020. The objective was to determine possible synergies or interaction between the LST and SUHI, as well as between SUHI and heat waves, in a region classified as highly vulnerable to the effects of climate change. For each Andalusian city, the atmospheric variables of ambient temperature, solar radiation, wind speed and direction were obtained from stations of the Spanish State Meteorological Agency (AEMET); the data were quantified and classified both in periods of normal environmental conditions and during heat waves. By means of Data Panel statistical analysis, the multivariate relationships were derived, determining which ones statistically influence the SUHI during heat wave periods. The results indicate that the LST and the mean SUHI obtained are statistically interacted and intensify under heat wave conditions. The greatest increases in daytime temperatures were seen for Sentinel-3A in cities by the coast (LST = 3.90 °C, SUHI = 1.44 °C) and for Sentinel-3B in cities located inland (LST = 2.85 °C, SUHI = 0.52 °C). The existence of statistically significant positive relationships above 99% (p < 0.000) between the SUHI and solar radiation, and between the SUHI and the direction of the wind, intensified in periods of heat wave, could be verified. An increase in the urban area affected by the SUHI under heat wave conditions is reported. Graphical Abstract

2020 ◽  
Author(s):  
Paul Hamer ◽  
Heidelinde Trimmel ◽  
Philipp Weihs ◽  
Stéphanie Faroux ◽  
Herbert Formayer ◽  
...  

&lt;p&gt;Climate change threatens to exacerbate existing problems in urban areas arising from the urban heat island. Furthermore, expansion of urban areas and rising urban populations will increase the numbers of people exposed to hazards in these vulnerable areas. We therefore urgently need study of these environments and in-depth assessment of potential climate adaptation measures.&lt;/p&gt;&lt;p&gt;We present a study of heat wave impacts across the urban landscape of Vienna for different future development pathways and for both present and future climatic conditions. We have created two different urban development scenarios that estimate potential urban sprawl and optimized development concerning future building construction in Vienna and have built a digital representation of each within the Town Energy Balance (TEB) urban surface model. In addition, we select two heat waves of similar frequency of return representative for present and future conditions (following the RCP8.5 scenario) of the mid 21&lt;sup&gt;st&lt;/sup&gt; century and use the Weather Research and Forecasting Model (WRF) to simulate both heat wave events. We then couple the two representations urban Vienna in TEB with the WRF heat wave simulations to estimate air temperature, surface temperatures and human thermal comfort during the heat waves. We then identify and apply a set of adaptation measures within TEB to try to identify potential solutions to the problems associated with the urban heat island.&lt;/p&gt;&lt;p&gt;Global and regional climate change under the RCP8.5 scenario causes the future heat wave to be more severe showing an increase of daily maximum air temperature in Vienna by 7 K; the daily minimum air temperature will increase by 2-4 K. We find that changes caused by urban growth or densification mainly affect air temperature and human thermal comfort local to where new urbanisation takes place and does not occur significantly in the existing central districts.&lt;/p&gt;&lt;p&gt;Exploring adaptation solutions, we find that a combination of near zero-energy standards and increasing albedo of building materials on the city scale accomplishes a maximum reduction of urban canyon temperature of 0.9 K for the minima and 0.2 K for the maxima. Local scale changes of different adaption measures show that insulation of buildings alone increases the maximum wall surface temperatures by more than 10 K or the maximum mean radiant temperature (MRT) in the canyon by 5 K.&amp;#160; Therefore, additional adaptation to reduce MRT within the urban canyons like tree shade are needed to complement the proposed measures.&lt;/p&gt;&lt;p&gt;This study concludes that the rising air temperatures expected by climate change puts an unprecedented heat burden on Viennese inhabitants, which cannot easily be reduced by measures concerning buildings within the city itself. Additionally, measures such as planting trees to provide shade, regional water sensitive planning and global reduction of greenhouse gas emissions in order to reduce temperature extremes are required.&lt;/p&gt;&lt;p&gt;We are now actively seeking to apply this set of tools to a wider set of cases in order to try to find effective solutions to projected warming resulting from climate change in urban areas.&lt;/p&gt;


2020 ◽  
Author(s):  
Josep Roca ◽  
Blanca Arellano

&lt;p&gt;The study of urban heat island (UHI) is of great relevance in the context of climate change (CC) and global warming. Cities accumulate heat in urban land covers as well as in built infrastructures, representing true islands of heat in relation to their rural environment, less urbanized. The literature on urban climate has highlighted the singular importance of night UHI phenomenon. It is during the night that the effects of UHI become more apparent, due to the low cooling capacity of urban construction materials and is during nighttime that temperatures can cause higher health risks, leading to the aggravation of negative impacts on people&amp;#8217;s health and comfort in extreme events such as heat waves becoming more and more frequent and lasting longer. However, the study of nocturnal UHIs is still poorly developed, due to the structural problems regarding the availability of land surface and air temperature data for night time.&lt;/p&gt;&lt;p&gt;Traditional methods for obtaining nocturnal UHI have been directed either to extrapolation of data from weather stations, or obtaining air temperatures through urban transects. In the first case, the lack of weather stations in urban landscapes makes it extremely difficult to obtain data to extrapolate and propose models at a detailed resolution scale. In the second case, there is a manifest difficulty in obtaining data simultaneously and significantly representative of urban and rural zones. Another used methodology for measuring the nocturnal UHI is remote sensing from MODIS images, but the greatest limitation about this method is the low resolution, therefore it is clear the need for open source databases with better or higher resolution to quantify the night surface temperature.&lt;/p&gt;&lt;p&gt;This paper aims to develop a model for nocturnal UHI analysing several areas of Alta and Baja California as well as in the Mediterranean Coast, using data from the Landsat thermal bands (with an spatial resolution of 30 square meters per pixel) and contrasting Landsat's very limited nighttime images with daytime ones. The contrast allows the construction of &amp;#8220;cooling&amp;#8221; models of the LST based on geographical characteristics (longitude, latitude, distance to the sea, DTM, slope, orientation, etc.) and urban-spatial parameters (land uses and land covers), which are likely to be extrapolated to different time periods.&lt;/p&gt;


2021 ◽  
Vol 13 (17) ◽  
pp. 3505
Author(s):  
Kangning Li ◽  
Yunhao Chen ◽  
Shengjun Gao

Urban heat island (UHI), referring to higher temperatures in urban extents than its surrounding rural regions, is widely reported in terms of negative effects to both the ecological environment and human health. To propose effective mitigation measurements, spatiotemporal variations and control machines of surface UHI (SUHI) have been widely investigated, in particular based on the indicator of SUHI intensity (SUHII). However, studies on SUHI frequency (SUHIF), an important temporal indicator, are challenged by a large number of missing data in daily land surface temperature (LST). Whether there is any city with strong SUHII and low SUHIF remains unclear. Thanks to the publication of daily seamless all-weather LST, this paper is proposed to investigate spatiotemporal variations of SUHIF, to compare SUHII and SUHIF, to conduct a pattern classification, and to further explore their driving factors across 305 Chinese cities. Four main findings are summarized below: (1) SUHIF is found to be higher in the south during the day, while it is higher in the north at night. Cities within the latitude from 20° N and 40° N indicate strong intensity and high frequency at day. Climate zone-based variations of SUHII and SUHIF are different, in particular at nighttime. (2) SUHIF are observed in great diurnal and seasonal variations. Summer daytime with 3.01 K of SUHII and 80 of SUHIF, possibly coupling with heat waves, increases the risk of heat-related diseases. (3) K-means clustering is employed to conduct pattern classification of the selected cities. SUHIF is found possibly to be consistent to its SUHII in the same city, while they provide quantitative and temporal characters respectively. (4) Controls for SUHIF and SUHII are found in significant variations among temporal scales and different patterns. This paper first conducts a comparison between SUHII and SUHIF, and provides pattern classification for further research and practice on mitigation measurements.


2016 ◽  
Vol 55 (3) ◽  
pp. 493-505 ◽  
Author(s):  
Bin Zhou ◽  
Dirk Lauwaet ◽  
Hans Hooyberghs ◽  
Koen De Ridder ◽  
Jürgen P. Kropp ◽  
...  

AbstractThis paper assesses the seasonality of the urban heat island (UHI) effect in the Greater London area (United Kingdom). Combining satellite-based observations and urban boundary layer climate modeling with the UrbClim model, the authors are able to address the seasonality of UHI intensity, on the basis of both land surface temperature (LST) and 2-m air temperature, for four individual times of the day (0130, 1030, 1330, and 2230 local time) and the daily means derived from them. An objective of this paper is to investigate whether the UHI intensities that are based on both quantities exhibit a similar hysteresis-like trajectory that is observed for LST when plotting the UHI intensity against the background temperature. The results show that the UrbClim model can satisfactorily reproduce both the observed urban–rural LSTs and 2-m air temperatures as well as their differences and the hysteresis in the surface UHI. The hysteresis-like seasonality is largely absent in both the observed and modeled 2-m air temperatures, however. A sensitivity simulation of the UHI intensity to incoming solar radiation suggests that the hysteresis of the LST can mainly be attributed to the seasonal variation in incoming solar radiation.


2020 ◽  
Vol 185 ◽  
pp. 02008
Author(s):  
Claire Xu

With predictions of global warming to continue into the near future, heat waves are likely to increase both in frequency and severity. Combined with the fast-developing urban areas and sky-rocketing populations in some regions, urban heat island effect becomes increasingly prominent. This trend has caused numerous problems in energy use, human health, and environmental stress. The purpose of the study in this article is to examine the effects of UHI and its impact on nearby water bodies. Through a series of data, which is collected by using Geospatial visualization tool, the study analyzes the extent to which UHI raises the water temperature in Wuhan, China, and compares lakes in different region of Wuhan to explore the impact of modified land surface and human activities. Given the exacerbation of the urban climatic crisis, the study also presents several potential solutions to a sustainable future in urban areas.


Author(s):  
S. F. Cañete ◽  
L. L. Schaap ◽  
R. Andales ◽  
R. E. S. Otadoy ◽  
A. C. Blanco ◽  
...  

Abstract. The Urban Heat Island (UHI) phenomenon is a manifestation of the abnormal amount of heat generated in urban areas and anthropogenic land surface modifications. While urbanization can improve material comfort and be a boon to the economy, the accompanying problems associated with urbanization like the UHI effect has implications on health, demand for water and energy, and impacts the microclimate. Land surface temperature (LST), the Normalized Difference Vegetation Index (NDVI), and the Normalized Difference Built-up Index (NDBI) were calculated from historical remotely-sensed Landsat data from 2013 to present. The global horizontal irradiance (GHI) was computed from the lidar-derived elevation model of Cebu City using the Geographical Resources Analysis Support System (GRASS). It is shown that annual variation in average temperatures in Cebu is generally less than 5 °C. Mean UHI temperatures in Cebu City do not show a clear trend over time, but categorizing data by season, namely the rainy season (June–November), the cool dry season (December–February), and the hot dry season (March–May), permits the emergence of a pattern. Surface temperatures for the cool dry season and hot dry season show a linearly increasing trend with R2 values of 0.916 and 0.514, respectively. This study further investigates the temporal change in the degree and extent of the UHI in Cebu City by analyzing LST maps. Regression analysis is done to determine how LST is affected by the distribution of vegetation (NDVI) and built-up (NDBI), and the seasonal variation in solar radiation through the GHI.


2021 ◽  
Vol 13 (3) ◽  
pp. 1099
Author(s):  
Yuhe Ma ◽  
Mudan Zhao ◽  
Jianbo Li ◽  
Jian Wang ◽  
Lifa Hu

One of the climate problems caused by rapid urbanization is the urban heat island effect, which directly threatens the human survival environment. In general, some land cover types, such as vegetation and water, are generally considered to alleviate the urban heat island effect, because these landscapes can significantly reduce the temperature of the surrounding environment, known as the cold island effect. However, this phenomenon varies over different geographical locations, climates, and other environmental factors. Therefore, how to reasonably configure these land cover types with the cooling effect from the perspective of urban planning is a great challenge, and it is necessary to find the regularity of this effect by designing experiments in more cities. In this study, land cover (LC) classification and land surface temperature (LST) of Xi’an, Xianyang and its surrounding areas were obtained by Landsat-8 images. The land types with cooling effect were identified and their ideal configuration was discussed through grid analysis, distance analysis, landscape index analysis and correlation analysis. The results showed that an obvious cooling effect occurred in both woodland and water at different spatial scales. The cooling distance of woodland is 330 m, much more than that of water (180 m), but the land surface temperature around water decreased more than that around the woodland within the cooling distance. In the specific urban planning cases, woodland can be designed with a complex shape, high tree planting density and large planting areas while water bodies with large patch areas to cool the densely built-up areas. The results of this study have utility for researchers, urban planners and urban designers seeking how to efficiently and reasonably rearrange landscapes with cooling effect and in urban land design, which is of great significance to improve urban heat island problem.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Jeffrey B. Basara ◽  
Heather G. Basara ◽  
Bradley G. Illston ◽  
Kenneth C. Crawford

During late July and early August 2008, an intense heat wave occurred in Oklahoma City. To quantify the impact of the urban heat island (UHI) in Oklahoma City on observed and apparent temperature conditions during the heat wave event, this study used observations from 46 locations in and around Oklahoma City. The methodology utilized composite values of atmospheric conditions for three primary categories defined by population and general land use: rural, suburban, and urban. The results of the analyses demonstrated that a consistent UHI existed during the study period whereby the composite temperature values within the urban core were approximately C warmer during the day than the rural areas and over C warmer at night. Further, when the warmer temperatures were combined with ambient humidity conditions, the composite values consistently revealed even warmer heat-related variables within the urban environment as compared with the rural zone.


Author(s):  
A. Tahooni ◽  
A. A. Kakroodi

Abstract. Urban Heat Island (UHI) refers to the development of higher urban temperatures of an urban area compared to the temperatures of surrounding suburban and rural areas. Highly reflective urban materials to solar radiation present a significantly lower surface temperature and contribute to reducing the sensible heat released in the atmosphere and mitigating the urban heat island. Many studies of the UHI effect have been based on Land Surface Temperature (LST) measurements from remote sensors. The remotely sensed UHI has been termed the surface urban heat island (SUHI) effect. This study examines Tabriz city land use/land cover (LULC) and LST changes using Landsat satellite images between 2000 and 2017. Maximum likelihood classification and single channel methods were used for LULC classification and LST retrieval respectively. Results show that impervious surface has increased 13.79% and bare soil area has decreased 16.2%. The results also revealed bare soil class LST after a constant trend become increasing. It also revealed the impervious surface LST has a decreasing trend between 2000 and 2011 and has a little change. Using materials that have low absorption and high reflectance decrease the effect of heat island considerably.


2021 ◽  
Author(s):  
Kazi Jihadur Rashid ◽  
Sumaia Islam ◽  
Mohammad Atiqur Rahman

Abstract Urban heat island (UHI) is one of the major causes for deteriorating ecology of the rapidly expanding Dhaka city in the changing climatic conditions. Although researchers have identified, characterized and modeled UHI in the study area, the ecological evaluation of UHI effect has not yet been focused. This study uses land surface normalization techniques such as urban thermal field variance (UTFVI) to quantify the impact of UHI and also identifies vulnerable UHI areas compared to land cover types. Landsat imageries from 1990 to 2020 were used at decadal intervals. Results of the study primarily show that intensified UHI areas have increased spatially from 33.1–40.9% in response to urban growth throughout the period of 1990 to 2020. Extreme surface temperature values above 31°C have also been shown in open soils in under-construction sites for future developmental purposes. UTFVI is categorized into six categories representing UHI intensity in relation to ecological conditions. Finally, comparative analysis between land use/land cover (LULC) with UTFVI shows that the ecological conditions deteriorate as the intensity of UHI increases in the area. The developed areas facing ecological threat have increased from 9.3–19.8% throughout the period. Effective mitigating measures such as increasing green surfaces and planned urbanization practices are crucial in this regard. This study would help policymakers to concentrate on controlling thermal exposure and on preserving sustainable urban life.


Sign in / Sign up

Export Citation Format

Share Document