Investigation for heavy metals in river waters in the federal capital territory, North Central of Nigeria

2020 ◽  
Vol 4 (2) ◽  
pp. 213-219
Author(s):  
A. T. Talabi ◽  
K. O. Odunaike ◽  
L. P. Akinyemi ◽  
B. O. Bashiru
Desalination ◽  
2008 ◽  
Vol 224 (1-3) ◽  
pp. 250-260 ◽  
Author(s):  
D. Karamanis ◽  
K. Stamoulis ◽  
K. Ioannides ◽  
D. Patiris

2018 ◽  
Vol 69 (4) ◽  
pp. 335-345 ◽  
Author(s):  
Orish Ebere Orisakwe ◽  
Emmanuel Ayuba Dagur ◽  
Herbert Orji Chidi Mbagwu ◽  
Nnaemeka Arinze Udowelle ◽  
Samuel James Offor

2020 ◽  
Vol 15 (1) ◽  
pp. 8-14
Author(s):  
J.D. Bala ◽  
J.J. Musa ◽  
H.I. Mustapha ◽  
I.Y. Yerima ◽  
D.E. Sunday ◽  
...  

Industrialization and population growth has lead to the introduction of toxic substances into the environment as waste from manufacturing  processes. This study describes the horizontal mobility of this waste containing heavy metals from dump sites to the surrounding environment of North Central state, Nigeria. Soil samples were collected within the dumpsites and the immediate surrounding soil at distance of 10m and 20m away to assess the migration and potential bioavailability of Cr, Fe, Mn, Pb, Zn, Cu and Al. Total concentration of the heavy metals and their fractionation were determined. The results indicate that heavy metals are more concentrated in the uppermost layer with significant migration down the slope, thereby posing a threat to groundwater quality. In the fractions, the concentrations of the metals follow this sequence: Mn>Fe>Cu>Zn>Cr>Al. The mobility factors of the heavy metals are significantly high indicating high potential mobility and bioavailable forms of these heavy metals. The high concentrations of the heavy metals particularly Cr, as observed in the study is as a result of anthropogenic activities on enrichment of natural soil with bioavailable heavy metals. Consequently, there is a need to be cautious in the way waste that is generated from heavy metals sources is added to natural soil. Key words: Dump site; Environment; Heavy metals; Soil; Waste


1998 ◽  
Vol 37 (8) ◽  
pp. 251-255 ◽  
Author(s):  
B. Eduardo Schalscha ◽  
T. Ines Ahumada

Industrial and domestic waste waters in Chile are discharged without previous treatment into rivers and other inland waters which are used to irrigate agricultural lands. The present study reports on results obtained when analyzing inland waters for Cd, Cu, Zn, Hg and As. Copper content was found to be high in most of the rivers studied and its sources were identifiable copper mining wastewaters. Cadmium and Zn levels are above accepted levels in some instances, whereas Hg and As content of river waters under study studied were found to be within accepted levels. The more reactive chemical forms of heavy metals in soils irrigated with polluted waters, as determined by sequential extraction, were found to be the most abundant ones. These forms are easily bio-available.


Author(s):  

Based on long-term data, the seasonal variability of the content of heavy metal compounds in the water of the rivers of the foothills of the Central Caucasus – the Terek, Malka, Baksan, Ardon, Cherek, and Urukh – was estimated.Generalizing studies affecting the regional characteristics of the level of hazardous heavy metals in the river waters of the foothill zone of the Central Caucasus have not been carried out over many years. Therefore, the objective of the study was to assess the level of hazardous compounds of heavy metals (Cr, Ni, Mo, Mn, Zn, Pb) in the water of the Terek, Malka, Baksan, Ardon, Cherek and Urukh rivers at 6 observation points located in the foothill zone of the Central Caucasus, for the period from 2005 to 2018. In the analysis, the atomic absorption method using the MGA-915M electrothermal atomizer was used. The level of heavy metal compounds in river water was evaluated by such characteristics as the long-term average and median concentrations, the range of concentration fluctuations, and the frequency of exceeding the maximum permissible concentration. An analysis of long-term data for the period 2005-2018 on the study of the level of heavy metal compounds in the water of the Baksan, Malka, Urukh, Terek, Cherek and Ardon rivers in the foothill zone of the Central Caucasus shows that river water pollution to a greater extent occurs in summer rain flood . The revealed levels of heavy metal compounds in river water over the long-term period under study, as well as the frequency of exceeding the maximum permissible concentration, are illustrated by graphs. The results obtained may be relevant in the development of regional water quality indicators.


Author(s):  
Wen Liu ◽  
Long Ma ◽  
Yaoming Li ◽  
Jilili Abuduwaili ◽  
Salamat Abdyzhapar uulu

The water resources of Central Asia play an important role in maintaining the fragile balance of ecosystems and the sustainable development of human society. However, the lack of research on the heavy metals in river waters has a far−reaching influence on public health and the sustainable development in Central Asia. In order to reveal the possible sources of the heavy metals and to assess the associated human health risks, thirty−eight water samples were collected from the rivers of the Issyk−Kul Basin during the period with low river flow (May) and the period with high river flow (July and August), and the hydrochemical compositions and major ions of heavy metals were analyzed. No changes in hydrochemical facies were observed between the two periods and the river water type was calcium bicarbonate. Carbonate dissolution and silicate weathering controlled the variation of cations and anions in river waters from the Issyk−Kul Basin. There were some differences in the sources of heavy metals in water bodies between the two periods. During the period with low river flow, heavy metals (Cr) were closely clustered with major ions, indicating that they were mainly affected by water–rock interactions. During the period with high river flow, all heavy metals studied in this paper had different sources of major ions, and the heavy metals maybe influenced by human activities. From the human health risk assessment, the hazard quotients for all samples were less than 1, reflecting that there was no noncarcinogenic risk in the river waters of the Issyk−Kul Basin during the two sampling periods. However, the water samples with carcinogenic risk of arsenic exceeding the threshold (10−4) accounted for 21.1% of the total, indicating that there were some certain carcinogenic hazards for human health via water drinking with direct oral ingestion. The results are of certain significance for the utilization and protection of water resources in the basin as well as the protection of public health.


2019 ◽  
Vol 43 (1) ◽  
Author(s):  
Mohammed Engha Isah ◽  
Nuhu Abdulkadir Abdulmumin ◽  
Paul D. Elaoyi ◽  
Ephraim Audu

Abstract Background The release of environmental pollutants such as heavy metals due to mining activities has received worldwide condemnation. Therefore, understanding the contamination of both surface and groundwater in Edege-Mbeki mining district is very important for the health and wellbeing of its people. Hence, the purpose of this study was to determine the physicochemical parameters of water samples and the level of heavy metals in Edege-Mbeki Columbite/Tantalite (COLTAN) mining site, North Central Nigeria. Results A total of 15 water samples were collected and analyzed in triplicate. The concentrations of five heavy metals (Ni, Mn, Pb, Cd, and Fe) in surface and groundwater samples were measured using atomic absorption spectrophotometer (AA-6800 Shimadzu). The physicochemical properties of the water samples were also examined. The results of the water quality assessments show that the water samples were contaminated with alarming levels of Pb, Cd and Ni. Mean concentrations were Ni (0.008 mg/L), Mn (0.087 mg/L), Pb (0.324 mg/L), Cd (0.029 mg/L), and Fe (0.839 mg/L) in Edege-Mbeki groundwater, while the surface water (mining ponds) had Ni (0.102 mg/L), Mn (0.099 mg/L), Pb (0.358 mg/L), Cd (0.025 mg/L), and Fe (6.99 mg/L). The groundwater samples in Mararaban-Edege which served as the control site had mean concentration levels of Ni (0.032 mg/L), Mn (0.096 mg/L), Pb (0.122 mg/L), Cd (0.039 mg/L), and Fe (0.608 mg/L). The range of pH was found to be from 5.6 ± 0.02 to 6.5 ± 0.12, turbidity was between 39.27 ± 0.29 and 2271 ± 0.00 NTU, and conductivity ranged from 39.27 ± 0.29 to 757.33 ± 5.69 μS/cm, TDS from 25.0 ± 2.3 to 450.67 ± 6.03 mg/L while dissolved oxygen (DO) values from 3.1 ± 0.3 to 3.5 ± 0.3 mg/L. Conclusion This study confirmed that surface and ground water samples in Edege-Mbeki and Mararaban-Edege are not fit for human consumption and other domestic use. Hence, government and community leaders must provide alternative means of water for the people of these communities.


Sign in / Sign up

Export Citation Format

Share Document