copper content
Recently Published Documents


TOTAL DOCUMENTS

842
(FIVE YEARS 153)

H-INDEX

40
(FIVE YEARS 4)

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2030
Author(s):  
Xingwen Wei ◽  
Steffen Dudczig ◽  
Dmitry Chebykin ◽  
Christos G. Aneziris ◽  
Olena Volkova

In the previous research works, ZnAl2O4 material was considered as one of the solutions for the decopperization process of molten steels; up to 33% of decopperization efficiency was reported by utilising the ZnAl2O4 filter. In order to verify the decopperization possibility of ZnAl2O4 materials, iron-based alloys with various copper and carbon contents were interacted with ZnAl2O4 substrates in a heating microscope under an argon gas atmosphere at 1600 °C. Fe-Cu alloys were found to react with the ZnAl2O4 substrate during the interaction process, and a reaction layer with a complex composition around the alloy droplet was formed; however, Cu was not detected in the reaction layer. Cu was later found diffused inside of the ZnAl2O4 substrates. Furthermore, the Cu-Zn compounds were detected when the copper content in Fe-Cu alloys was 10 wt% Cu. After interaction experiments, copper was decreased in all cases. Thereby, the copper evaporation and infiltration into the ZnAl2O4 substrate were considered as the reasons for copper loss. Moreover, oxygen dissolved in melt was found to have a great effect on the copper evaporation process.


Author(s):  
Kahina Djaoudi ◽  
Javier Angel. Tesán Onrubia ◽  
Amine Boukra ◽  
Lucas Guesnay ◽  
Aurélie Portas ◽  
...  

2021 ◽  
Vol 48 (6) ◽  
pp. 862-873
Author(s):  
Abed Forouzesh ◽  
Fatemeh Forouzesh ◽  
Sadegh Samadi Foroushani ◽  
Abolfazl Forouzesh ◽  
Eskandar Zand
Keyword(s):  

2021 ◽  
Vol 24 (04) ◽  
pp. 372-377
Author(s):  
V.S. Bilanych ◽  
◽  
M.I. Babilya ◽  
D.M. Korovska ◽  
V.I. Studenyak ◽  
...  

Cu1–xAgx)7GeSe5I-based ceramics were prepared by pressing and sintering from the micro- and nanopowders. The ceramic samples were investigated using microstructural analysis. The microhardness was measured applying the indentation method with use of the Vickers pyramid. It has been shown that the microhardness of (Cu1–xAgx)7GeSe5I-based ceramics decreases with copper content decrease at Cu+→Ag+cationic substitution. The compositional dependences and size effects of microhardness inherent to (Cu1–xAgx)7GeSe5I-based ceramics have been analyzed. The size effects of microindentation have been interpreted within the framework of the gradient theory of plasticity.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7028
Author(s):  
Oleg S. Medvedev ◽  
Ekaterina E. Alyasova ◽  
Rona E. Besprozvannaya ◽  
Asadula A. Gadzhiev ◽  
Veronika V. Krivova ◽  
...  

The active development of the power electronics market and a constant increase in the prices of components require new materials and approaches, including a power module packaging technology. The use of aluminum instead of copper in the power module baseplate is an interesting and promising solution. The insulated metal baseplate is one of the most extensively developed technologies nowadays. The object of this study is an insulated metal substrate based on anodized aluminum. The main goal of the article is the comparison of copper topology adhesion to an anodized aluminum oxide layer formed on different aluminum alloys with aluminum content of at least 99.3 wt %. Peel test and pull-off adhesions showed a twofold difference for both aluminum alloys. The high ordered defect-free anodized alumina formed on alloys with copper content of 0.06 wt % had a mean pull-off adhesion of 27 N/mm2 and hardness of 489 HV. In the case of the alloy with copper content of around 0.15 wt %, it had hardness of 295 HV and a mean pull-off adhesion of 12 N/mm2. The results of our microstructure investigation showed that anodized alumina based on alloys with copper content of around 0.15 wt % is fragile due to spherical holes. Summing up the results, it can be concluded that not all initial impurities are critical for anodized alumina, but some, specifically copper, dramatically decreased the mechanical properties of anodized alumina.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6896
Author(s):  
Žydrūnas Kavaliauskas ◽  
Vilius Dovydaitis ◽  
Romualdas Kėželis ◽  
Liutauras Marcinauskas ◽  
Vitas Valinčius ◽  
...  

Plasma spraying and magnetron sputtering were used to form graphite–copper films on an n-type silicon surface. The main objective of this work was to compare the properties of the obtained graphite–copper Schottky photodiodes prepared using two different layer formation methods and to evaluate the influence of copper content on the surface morphology, phase structure, and photovoltaic characteristics of the graphite–copper films. Surface morphology analysis shows that the surface of the formed layers using either plasma spraying technology or the magnetron sputtering method consists of various sphere-shaped microstructures. The X-ray diffraction measurements demonstrated that the graphite–copper coatings formed by plasma spraying were crystalline phase. Meanwhile, the films deposited by magnetron sputtering were amorphous when the copper concentration was up to 9.7 at.%. The increase in copper content in the films led to the formation of Cu crystalline phase. Schottky diodes formed using magnetron sputtering technology had a maximum current density of 220 mA/cm2 at 5 V. Meanwhile, the maximum electric current density of Schottky photodiodes formed using plasma spraying reached 3.8 mA/cm2. It was demonstrated that the efficiency of Schottky diodes formed using magnetron sputtering was up to 60 times higher than Schottky diodes formed using plasma spraying.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3212
Author(s):  
Alexander S. Pozdnyakov ◽  
Artem I. Emel’yanov ◽  
Svetlana A. Korzhova ◽  
Nadezhda P. Kuznetsova ◽  
Yuliya I. Bolgova ◽  
...  

New stable nanocomposites with copper nanoparticles (CuNPs) in a polymer matrix have been synthesized by green chemistry. Non-toxic poly-N-vinylimidazole was used as a stabilizing polymer matrix and ascorbic acid was used as a reducing agent. The polymer CuNPs nanocomposites were characterized by Fourier transform infrared (FTIR) spectroscopy, ultraviolet–visible (UV) spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic absorption spectroscopy (AAS), and thermogravimetric analysis (TGA). It was shown, using the dynamic light scattering (DLS) method, that the hydrodynamic diameters of nanocomposites depend on the CuNPs content and are in an associated state in an aqueous medium. The copper content in nanocomposites ranges from 1.8 to 12.3% wt. The obtained polymer nanocomposites consist of isolated copper nanoparticles with a diameter of 2 to 20 nm with a spherical shape.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1462
Author(s):  
Na Li ◽  
Ling Yan ◽  
Shaodong Wang ◽  
Changshun Wang ◽  
Hongmei Zhang ◽  
...  

Using a period immersion wet/dry cyclic corrosion test, in-situ copper-coated steels prepared by corroding copper-bearing steels were investigated in this study. The steel with a higher copper content (>3%) has a higher initial corrosion rate due to its obvious two-phase microstructure. The corrosion rates of all copper bearing steels tend to be stable after a certain time of corrosion. A copper-rich layer is formed between the matrix and the rust layer, which is due to the diffusion of copper from the rust layer to the metal surface. The copper’s stability under this corrosion condition led to the formation of a thin copper-rich film, which was uncovered after removing the rust by choosing appropriate descaling reagents. The copper coating was generated from the matrix itself during the corrosion process at 25 °C, which provided a new approach for producing in-situ composite materials without any bonding defect. It is found that the corrosion rate, corrosion time, and copper content in steel all affect the formation of copper-rich layer. In addition to the noble copper surface, the electrochemical corrosion test results show that the corrosion resistance of copper-coated steel has been significantly improved.


2021 ◽  
Vol 15 (04) ◽  
Author(s):  
Kun Shang ◽  
Chenchao Xiao ◽  
Fuping Gan ◽  
Hongyan Wei ◽  
Changkun Wang

Sign in / Sign up

Export Citation Format

Share Document