scholarly journals First Report of Infection of Fallopia multiflora with cucumber mosaic virus and zucchini yellow mosaic virus

2018 ◽  
Vol 100 (2) ◽  
pp. 333-333 ◽  
Author(s):  
Nam-Yeon Kim ◽  
Hyo-Jeong Lee ◽  
Mi-Ri Park ◽  
Jin-Sung Hong ◽  
Rae-Dong Jeong
Plant Disease ◽  
2006 ◽  
Vol 90 (3) ◽  
pp. 380-380 ◽  
Author(s):  
N. Dukić ◽  
B. Krstić ◽  
I. Vico ◽  
J. Berenji ◽  
B. Duduk

During a cucurbit disease survey in August 2004, severe symptoms resembling those caused by viruses were observed on bottlegourd (Lagenaria siceraria (Molina) Standl.) in the Vojvodina region of Serbia. Symptoms included stunting, mosaic, green veinbanding, blistering, yellowing, chlorotic spots, leaf deformation, and fruit distortion. Leaf samples from 25 symptomatic plants were collected from two localities for virus identification using mechanical transmission and serological testing. Crude sap extract from leaf samples was mechanically inoculated onto bottlegourd and pumpkin (Cucurbita pepo) under greenhouse conditions. Field-collected bottlegourd and inoculated plants were tested using double-antibody sandwich enzyme-linked immunosorbent assays (DAS-ELISA). Positive reactions were obtained on collected and inoculated plants with polyclonal antiserum (Loewe Biochemica, Sauerlach, Germany) to Zucchini yellow mosaic virus(ZYMV) in 23 samples, with antiserum to Watermelon mosaic virus (WMV) in eight samples, and with antiserum to Cucumber mosaic virus (CMV) in seven samples. Each of the three viruses was detected in single as well as in mixed infections with the other two viruses. Biological characterization of viruses detected in single infections was done on the following indicator plants: Chenopodium amaranticolor, C. quinoa, Cucumis sativus, Cucumis melo, Citrullus lanatus, Nicotiana glutinosa, and N. tabacum cv. Samsun. The symptoms observed on indicator plants for each isolate corresponded to the results of DAS-ELISA (2,3). All three viruses are known to be important pathogens of cucurbit plants and were previously reported in pumpkin in Serbia (1). To our knowledge, this is the first report of ZYMV, WMV, and CMV in bottlegourd in Serbia. References: (1) N. Dukić et al. J. Agric. Sci. 47:149, 2002. (2) D. E. Lesemann et al. Phytopathol. Z. 108:304, 1983. (3) H. Rahimian and K. Izadpanah. Phytopathol. Z. 92:305, 1978.


2019 ◽  
Vol 101 (3) ◽  
pp. 771-771 ◽  
Author(s):  
In-Sook Cho ◽  
Bong-Nam Chung ◽  
Sun-Jung Kwon ◽  
Ju-Yeon Yoon ◽  
Gug-Seoun Choi ◽  
...  

2013 ◽  
Vol 24 (2) ◽  
pp. 289-290 ◽  
Author(s):  
A. M. Anthony Johnson ◽  
T. Vidya ◽  
S. Papaiah ◽  
M. Srinivasulu ◽  
Bikash Mandal ◽  
...  

Plant Disease ◽  
2019 ◽  
Vol 103 (10) ◽  
pp. 2700
Author(s):  
Raj Verma ◽  
Savarni Tripathi ◽  
T. Gorane ◽  
A. A. Naik ◽  
T. D. Nikam ◽  
...  

Plant Disease ◽  
2005 ◽  
Vol 89 (5) ◽  
pp. 530-530 ◽  
Author(s):  
Y.-M. Liao ◽  
X.-J. Gan ◽  
B. Chen ◽  
J.-H. Cai

Luohanguo, Siraitia grosvenorii (Swingle) C. Jeffrey, is a perennial cucurbitaceous plant that is an economically important medicinal and sweetener crop in Guangxi province, China. Surveys conducted during the summer to fall seasons of 2003-2004 in northern Guangxi showed symptoms typical of a viral disease, including leaf mottling, mosaic, vein clearing, curling, and shoestring-like distortion in the field. Mechanical inoculation of sap from leaves of symptomatic plants collected from the surveyed areas caused similar symptoms on tissue culture-derived healthy Luohanguo plants. Two sequences of 0.7 and 1.6 kb with 88 and 97% identity to Papaya ringspot virus (PRSV) and Zucchini yellow mosaic virus (ZYMV) were amplified using reverse transcription-polymerase chain reaction (RT-PCR) with purified flexuous viral particles or total RNA extracted from the symptomatic Luohanguo leaves as templates with conserved degenerate potyvirus primers (1). To confirm the results, primers specific for PRSV (PP1/PP2, genome coordinates 4064-4083/5087-5069, GenBank Accession No X97251) and ZYMV (ZP1/ZP2, genome coordinates 5540-5557/7937-7920, GenBank Accession No L31350) were used to perform RT-PCR from the same RNA templates. The expected 1.0- and 2.3-kb fragments were amplified and they were 90 and 95% identical to PRSV and ZYMV in sequence, respectively. Watermelon mosaic virus was not detected. To our knowledge, this is the first report of the occurrence of PRSV and ZYMV in Luohanguo. Reference: (1) A. Gibbs et al. J. Virol. Methods 63:9, 1997.


Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 1016-1016 ◽  
Author(s):  
B. Babu ◽  
H. Dankers ◽  
M. L. Paret

Scotch bonnet (Capsicum chinense) is a tropical hot pepper variety that is grown in South America, the Caribbean Islands, and in Florida, and is an important cash crop. In Florida, scotch bonnet is grown on ~100 acres annually. Virus-like leaf symptoms including mosaic and yellow mottling were observed on scotch bonnet plants in a field at Quincy, FL, with a disease incidence of ~5%. Two symptomatic and one non-symptomatic plant sample were collected from this field for identification of the causal agent associated with the symptoms. Viral inclusion assays (2) of the epidermal tissues of the symptomatic scotch bonnet samples using Azure A stain indicated the presence of spherical aggregates of crystalline inclusion bodies. Testing of the symptomatic samples using lateral flow immunoassays (Immunostrips, Agdia, Elkhart, IN) specific to Cucumber mosaic virus (CMV), Potato virus Y (PVY), Pepper mild mottle virus (PMMoV), Tobacco mosaic virus (TMV), Zucchini yellow mosaic virus (ZYMV), and Papaya ringspot virus (PRSV), showed a positive reaction only to CMV. The sap from an infected leaf sample ground in 0.01 M Sorensons phosphate buffer (pH 7.0) was used to mechanically inoculate one healthy scotch bonnet plant (tested negative for CMV with Immunostrip) at the 2- to 3-leaf stage. The inoculated plant developed mild mosaic and mottling symptoms 12 to 14 days post inoculation. The presence of CMV in the mechanically inoculated plant was further verified using CMV Immunostrips. Total RNA was extracted (RNeasy Plant Mini Kit, Qiagen, Valencia, CA) from the previously collected two symptomatic and one non-symptomatic scotch bonnet samples. The samples were subjected to reverse-transcription (RT)-PCR assays using SuperScript III One-Step RT-PCR System (Invitrogen, Life Technologies, Grand Island, NY), and using multiplex RT-PCR primer sets (1). The primers were designed to differentiate the CMV subgroup I and II, targeting the partial coat protein gene and the 3′UTR. The RT-PCR assays using the multiplex primers produced an amplicon of 590 bp, with the CMV subgroup I primers. The RT-PCR product was only amplified from the symptomatic leaf samples. The obtained amplicons were gel eluted, and directly sequenced bi-directionally (GenBank Accession Nos. KF805389 and KF805390). BLAST analysis of these sequences showed 97 to 98% nucleotide identities with the CMV isolates in the NCBI database. The isolates collected in Florida exhibited highest identity (98%) with the CMV isolate from tomato (DQ302718). These results revealed the association of CMV subgroup I with symptomatic scotch bonnet leaf samples. Although CMV has been reported from scotch bonnet, this is the first report of its occurrence in Florida. References: (1) S. Chen et al. Acta Biochim Biophys Sin. 43:465, 2011. (2) R. G. Christie and J. R. Edwardson. Plant Dis. 70:273, 1986.


Sign in / Sign up

Export Citation Format

Share Document