Validations of Rotor Load Analysis Using Flexible Multibody Dynamics with Multiple Wake Panels for Low-Speed Flights

2018 ◽  
Vol 19 (4) ◽  
pp. 863-877
Author(s):  
Jae-Sang Park
Author(s):  
Martin M. Tong

Numerical solution of the dynamics equations of a flexible multibody system as represented by Hamilton’s canonical equations requires that its generalized velocities q˙ be solved from the generalized momenta p. The relation between them is p = J(q)q˙, where J is the system mass matrix and q is the generalized coordinates. This paper presents the dynamics equations for a generic flexible multibody system as represented by p˙ and gives emphasis to a systematic way of constructing the matrix J for solving q˙. The mass matrix is shown to be separable into four submatrices Jrr, Jrf, Jfr and Jff relating the joint momenta and flexible body mementa to the joint coordinate rates and the flexible body deformation coordinate rates. Explicit formulas are given for these submatrices. The equations of motion presented here lend insight to the structure of the flexible multibody dynamics equations. They are also a versatile alternative to the acceleration-based dynamics equations for modeling mechanical systems.


Sign in / Sign up

Export Citation Format

Share Document