Parametric Analysis of a Rotational Piezoelectric-Coupled Tapered-Bimorph Structure with Various Boundary Conditions Under Transient Axial Loading

Author(s):  
R. R. Chand ◽  
A. Tyagi
1957 ◽  
Vol 8 (2) ◽  
pp. 145-156 ◽  
Author(s):  
P. Shuleshko

SummarySeveral plate buckling problems are solved, using a reduction method. By this method the solution of an orthotropic plate can be reduced to the solution of an isotropic plate and the solution of a plate with bi-axial loading can be reduced to the solution of a plate with uni-axial loading and so on. Plates with simply-supported ends and various boundary conditions at the sides with uni-axial and bi-axial loading are considered and the necessary reduction equations are given.


1998 ◽  
Vol 5 (5-6) ◽  
pp. 343-354 ◽  
Author(s):  
T.Y. Ng ◽  
K.Y. Lam

In this paper, a formulation for the dynamic stability analysis of circular cylindrical shells under axial compression with various boundary conditions is presented. The present study uses Love’s first approximation theory for thin shells and the characteristic beam functions as approximate axial modal functions. Applying the Ritz procedure to the Lagrangian energy expression yields a system of Mathieu–Hill equations the stability of which is analyzed using Bolotin’s method. The present study examines the effects of different boundary conditions on the parametric response of homogeneous isotropic cylindrical shells for various transverse modes and length parameters.


2017 ◽  
Vol 54 (2) ◽  
pp. 195-202
Author(s):  
Vasile Nastasescu ◽  
Silvia Marzavan

The paper presents some theoretical and practical issues, particularly useful to users of numerical methods, especially finite element method for the behaviour modelling of the foam materials. Given the characteristics of specific behaviour of the foam materials, the requirement which has to be taken into consideration is the compression, inclusive impact with bodies more rigid then a foam material, when this is used alone or in combination with other materials in the form of composite laminated with various boundary conditions. The results and conclusions presented in this paper are the results of our investigations in the field and relates to the use of LS-Dyna program, but many observations, findings and conclusions, have a general character, valid for use of any numerical analysis by FEM programs.


2011 ◽  
Vol 255-260 ◽  
pp. 166-169
Author(s):  
Li Chen ◽  
Yang Bai

The eigenfunction expansion method is introduced into the numerical calculations of elastic plates. Based on the variational method, all the fundamental solutions of the governing equations are obtained directly. Using eigenfunction expansion method, various boundary conditions can be conveniently described by the combination of the eigenfunctions due to the completeness of the solution space. The coefficients of the combination are determined by the boundary conditions. In the numerical example, the stress concentration phenomena produced by the restriction of displacement conditions is discussed in detail.


2007 ◽  
Vol 129 (5) ◽  
pp. 541-549 ◽  
Author(s):  
Erick Ogam ◽  
Armand Wirgin ◽  
Z. E. A. Fellah ◽  
Yongzhi Xu

The potentiality of employing nonlinear vibrations as a method for the detection of osteoporosis in human bones is assessed. We show that if the boundary conditions (BC), relative to the connection of the specimen to its surroundings, are not taken into account, the method is apparently unable to differentiate between defects (whose detection is the purpose of the method) and nonrelevant features (related to the boundary conditions). A simple nonlinear vibration experiment is described which employs piezoelectric transducers (PZT) and two idealized long bones in the form of nominally-identical drinking glasses, one intact, but in friction contact with a support, and the second cracked, but freely-suspended in air. The nonlinear dynamics of these specimens is described by the Duffing oscillator model. The nonlinear parameters recovered from vibration data coupled to the linear phenomena of mode splitting and shifting of resonance frequencies, show that, despite the similar soft spring behavior of the two dynamic systems, a crack is distinguishable from a contact friction BC. The frequency response of the intact glass with contact friction BC is modeled using a direct steady state finite element simulation with contact friction.


Sign in / Sign up

Export Citation Format

Share Document