transverse modes
Recently Published Documents


TOTAL DOCUMENTS

463
(FIVE YEARS 62)

H-INDEX

30
(FIVE YEARS 3)

Author(s):  
Victor Barrera-Figueroa ◽  
Vladimir S. Rabinovich ◽  
Samantha Ana Cristina Loredo-Ramı́rez

Abstract The work is devoted to the asymptotic and numerical analysis of the wave function propagating in two-dimensional quantum waveguides with confining potentials supported on slowly varying tubes. The leading term of the asymptotics of the wave function is determined by an adiabatic approach and the WKB approximation. Unlike other similar studies, in the present work we consider arbitrary bounded potentials and obtain exact solutions for the thresholds, and for the transverse modes in the form of power series of the spectral parameter. Our approach leads to an effective numerical method for the analysis of such quantum waveguides and for the tunnel effect observed in sections of the waveguide that shrink or widen too much. Several examples of interest show the applicability of the method.


2022 ◽  
Vol 9 ◽  
Author(s):  
Xin Wang ◽  
Zilong Zhang ◽  
Yuan Gao ◽  
Suyi Zhao ◽  
Yuchen Jie ◽  
...  

Optical lattices (OLs) with diverse transverse patterns and optical vortex lattices (OVLs) with special phase singularities have played important roles in the fields of atomic cooling, particle manipulation, quantum entanglement, and optical communication. As a matter of consensus until now, the OL patterns are generated by coherently superimposing multiple transverse modes with a fixed phase difference through the transverse mode locking (TML) effect. There are phase singularities in the dark area of this kind of OL pattern, so it is also called OVL pattern. However, in our research, it is found that some high-order complex symmetric OL patterns can hardly be analyzed by TML model. Instead, the analysis method of incoherent superposition of mode intensity could be applied. The OL pattern obtained by this method can be regarded as in non-TML state. Therefore, in this article, we mainly study the distinct characteristics and properties of OL patterns in TML and non-TML states. Through intensity comparison, interferometry, and beat frequency spectrum, we can effectively distinguish OL pattern in TML and non-TML states, which is of significance to explore the formation of laser transverse pattern possessing OL.


Author(s):  
Ting Wu ◽  
Yu-Po Wong ◽  
Yiwen He ◽  
Jing-Fu Bao ◽  
Ken-ya Hashimoto

Abstract Abstract: This paper discusses applicability of periodically slotted electrodes for realization of wideband transversely-coupled double-mode resonator filters using lithium niobate (LN) thin plate. First, two-dimensional analysis is carried out, and it is shown that the periodic structure is effective to control the frequency separation between two resonance modes, and synthesis of the fractional bandwidth larger than 24% is achievable. Next, 3D analysis is performed for suppression of spurious resonances. It is shown that the mass loading at aperture edges is effective for the piston mode operation, and transverse modes can be well suppressed. It is also pointed out that the bottom electrode should be covered only the aperture region and removed from the busbar and gap regions for suppression of unwanted resonances. With these proper edge treatments, spurious-free and wide passband can be synthesized.


Author(s):  
Glauber Carvalho Dorsch ◽  
Lucas Emanuel Antunes Porto

Abstract We present a pedagogical introduction to some key computations in gravitational waves via a side-by-side comparison with the quadrupole contribution of electromagnetic radiation. Subtleties involving gauge choices and projections over transverse modes in the tensorial theory are made clearer by direct analogy with the vectorial counterpart. The power emitted by the quadrupole moment in both theories is computed, and the similarities as well as the origins of eventual discrepancies are discussed. Finally, we analyze the stability of bound systems under radiation emission, and discuss how the strength of the interactions can be established this way. We use the results to impose an anthropic bound on Newton's constant of order G < 3×104 Gobs, which is on par with similar constraints from stellar formation.


Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 450
Author(s):  
Pedro Vayssière Brandão ◽  
Michele Celli ◽  
Antonio Barletta

The onset of the thermal instability is investigated in a porous channel with plane parallel boundaries saturated by a non–Newtonian shear–thinning fluid and subject to a horizontal throughflow. The Ellis model is adopted to describe the fluid rheology. Both horizontal boundaries are assumed to be impermeable. A uniform heat flux is supplied through the lower boundary, while the upper boundary is kept at a uniform temperature. Such an asymmetric setup of the thermal boundary conditions is analysed via a numerical solution of the linear stability eigenvalue problem. The linear stability analysis is developed for three–dimensional normal modes of perturbation showing that the transverse modes are the most unstable. The destabilising effect of the non–Newtonian shear–thinning character of the fluid is also demonstrated as compared to the behaviour displayed, for the same flow configuration, by a Newtonian fluid.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sungjoon Park ◽  
Yoonseok Hwang ◽  
Hong Chul Choi ◽  
Bohm-Jung Yang

AbstractAcoustic phonon is a classic example of triple degeneracy point in band structure. This triple point always appears in phonon spectrum because of the Nambu–Goldstone theorem. Here, we show that this triple point can carry a topological charge $${\mathfrak{q}}$$ q that is a property of three-band systems with space-time-inversion symmetry. The charge $${\mathfrak{q}}$$ q can equivalently be characterized by the skyrmion number of the longitudinal mode, or by the Euler number of the transverse modes. We call triple points with nontrivial $${\mathfrak{q}}$$ q the topological acoustic triple point (TATP). TATP can also appear at high-symmetry momenta in phonon and spinless electron spectrums when Oh or Th groups protect it. The charge $${\mathfrak{q}}$$ q constrains the nodal structure and wavefunction texture around TATP, and can induce anomalous thermal transport of phonons and orbital Hall effect of electrons. Gapless points protected by the Nambu–Goldstone theorem form a new platform to study the topology of band degeneracies.


Author(s):  
Pedro Vayssière Brandão ◽  
Michele Celli ◽  
Antonio Barletta

The onset of the thermal instability is investigated in a porous channel with plane parallel boundaries saturated by a non–Newtonian shear–thinning fluid and subject to a horizontal throughflow. The Ellis model is adopted to describe the fluid rheology. Both horizontal boundaries are assumed to be impermeable. A uniform heat flux is supplied through the lower boundary, while the upper boundary is kept at a uniform temperature. Such an asymmetric setup of the thermal boundary conditions is analysed via a numerical solution of the linear stability eigenvalue problem. The linear stability analysis is developed for three–dimensional normal modes of perturbation showing that the transverse modes are the most unstable. The destabilising effect of the non-Newtonian shear–thinning character of the fluid is also demonstrated as compared to the behaviour displayed, for the same flow configuration, by a Newtonian fluid.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7460
Author(s):  
Yifan Liu ◽  
Junqi Yang ◽  
Bingyan Wu ◽  
Bin Lu ◽  
Luwei Shuai ◽  
...  

Phase-sensitive optical time domain reflectometer (Φ-OTDR) has attracted attention in scientific research and industry because of its distributed dynamic linear response to external disturbances. However, the signal-to-noise ratio (SNR) of Φ-OTDR is still a limited factor by the weak Rayleigh Backscattering coefficient. Here, the multi-transverse modes heterodyne matched-filtering technology is proposed to improve the system SNR. The capture efficiency and nonlinear threshold are increased with multiple transverse modes in few-mode fibers; the incident light energy is permitted to be enlarged by a wider probe pulse by using heterodyne matched-filtering without spatial resolution being deteriorated. As far as we know, this is the first time that both multi-transverse modes integration method and digital heterodyne matched filtering method have been used to improve the SNR of Φ-OTDR simultaneously. Experimental results show that the noise floor is reduced by 11.4 dB, while the target signal is kept. We believe that this proposed method will help DAS find important applications in marine acoustic detection and seismic detection.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Larissa Kohler ◽  
Matthias Mader ◽  
Christian Kern ◽  
Martin Wegener ◽  
David Hunger

AbstractThe dynamics of nanosystems in solution contain a wealth of information with relevance for diverse fields ranging from materials science to biology and biomedical applications. When nanosystems are marked with fluorophores or strong scatterers, it is possible to track their position and reveal internal motion with high spatial and temporal resolution. However, markers can be toxic, expensive, or change the object’s intrinsic properties. Here, we simultaneously measure dispersive frequency shifts of three transverse modes of a high-finesse microcavity to obtain the three-dimensional path of unlabeled SiO2 nanospheres with 300 μs temporal and down to 8 nm spatial resolution. This allows us to quantitatively determine properties such as the polarizability, hydrodynamic radius, and effective refractive index. The fiber-based cavity is integrated in a direct-laser-written microfluidic device that enables the precise control of the fluid with ultra-small sample volumes. Our approach enables quantitative nanomaterial characterization and the analysis of biomolecular motion at high bandwidth.


Author(s):  
Artem Kryvobok ◽  
Alan D. Kathman

AbstractSome quantum optics researchers might not realize that classical electromagnetism predicts a $$\mathbf {\pi }$$ π phase shift between S- and P-polarized reflection and might think the reflection coefficients of the transverse modes are independent, or that such a phase shift has no measurable consequences. In this paper, we discuss theoretical grounds to define elements of a 4x4 matrix to represent the beamsplitter, accurately accounting for transverse polarization modes and phase relations between them. We also provide experimental evidence confirming this matrix representation. From a scientific point of view, the paper addresses a non-trivial equivalence between the classical fields Fresnel formalism and the canonical commutation relations of the quantized photonic fields. That the formalism can be readily verified with a simple experiment provides further benefit. The beamsplitter expression derived can be applied in the field of quantum computing.


Sign in / Sign up

Export Citation Format

Share Document