scholarly journals Active prevention of snow accumulation on cameras of autonomous vehicles

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Behrouz Mohammadian ◽  
Mehdi Sarayloo ◽  
Jamie Heil ◽  
Haiping Hong ◽  
Sunil Patil ◽  
...  

Abstract Accumulation of atmospheric icing, particularly wet snow, on the visual sensors/navigators of autonomous vehicles (AVs) increases the possibility of accidents by obstructing the lenses of the sensors. Here, two navigator designs were suggested that use airflow across the lens surfaces of the AVs to prevent snow accumulation on them. The impact of airflow intensity across the lens, wind velocity (relative velocity of wind with respect to vehicle), and liquid water content of snow on prevention of snow accumulation on the lenses of the AVs was explored experimentally. Here, artificial snow grains were formed using a novel snow gun and their average sizes at low liquid water content (LWC of ≈ 8%) and high liquid water content (LWC of ≈ 28%) were measured to study the impact of grain sizes on snow accumulation on camera lenses. The effects of wind velocity, snow density, and diameter of the snow grains on their trajectory in the testing section were also studied numerically. The results indicated that the snow grains with higher velocity, density, or diameter possessed higher inertia forces and were more prone to collide with the navigator, increasing collision efficiency of snow grains. We realized that the airflow across the lens effectively prevented snow accumulation on the lens at vehicle/wind velocities of up to 20 mph. The proposed designs actively reduced the snow accumulation on the camera lens, promising to be applied in future AVs. Graphic abstract

2020 ◽  
Vol 10 (16) ◽  
pp. 5407
Author(s):  
Jamie Heil ◽  
Behrouz Mohammadian ◽  
Mehdi Sarayloo ◽  
Kevin Bruns ◽  
Hossein Sojoudi

Understanding the mechanisms of snow adhesion to surfaces and its subsequent shedding provides means to search for active and passive methods to mitigate the issues caused by snow accumulation on surfaces. Here, a novel setup is presented to measure the adhesion strength of snow to various surfaces without altering its properties (i.e., liquid water content (LWC) and/or density) during the measurements and to study snow shedding mechanisms. In this setup, a sensor is utilized to ensure constant temperature and liquid water content of snow on test substrates, unlike inclined or centrifugal snow adhesion testing. A snow gun consisting of an internal mixing chamber and ball valves for adjusting air and water flow is designed to form snow with controlled LWC inside a walk-in freezing room with controlled temperatures. We report that snow adheres to surfaces strongly when the LWC is around 20%. We also show that on smooth (i.e., RMS roughness of less than 7.17 μm) and very rough (i.e., RMS roughness of greater than 308.33 μm) surfaces, snow experiences minimal contact with the surface, resulting in low adhesion strength of snow. At the intermediate surface roughness (i.e., RMS of 50 μm with a surface temperature of 0 °C, the contact area between the snow and the surface increases, leading to increased adhesion strength of snow to the substrate. It is also found that an increase in the polar surface energy significantly increases the adhesion strength of wet snow while adhesion strength decreases with an increase in dispersive surface energy. Finally, we show that during shedding, snow experiences complete sliding, compression, or a combination of the two behaviors depending on surface temperature and LWC of the snow. The results of this study suggest pathways for designing surfaces that might reduce snow adhesion strength and facilitate its shedding.


1994 ◽  
Vol 12 (2/3) ◽  
pp. 240-253 ◽  
Author(s):  
F. Parol ◽  
J. C. Buriez ◽  
D. Crétel ◽  
Y. Fouquart

Abstract. Through their multiple interactions with radiation, clouds have an important impact on the climate. Nonetheless, the simulation of clouds in climate models is still coarse. The present evolution of modeling tends to a more realistic representation of the liquid water content; thus the problem of its subgrid scale distribution is crucial. For a convective cloud field observed during ICE 89, Landsat TM data (resolution: 30m) have been analyzed in order to quantify the respective influences of both the horizontal distribution of liquid water content and cloud shape on the Earth radiation budget. The cloud field was found to be rather well-represented by a stochastic distribution of hemi-ellipsoidal clouds whose horizontal aspect ratio is close to 2 and whose vertical aspect ratio decreases as the cloud cell area increases. For that particular cloud field, neglecting the influence of the cloud shape leads to an over-estimate of the outgoing longwave flux; in the shortwave, it leads to an over-estimate of the reflected flux for high solar elevations but strongly depends on cloud cell orientations for low elevations. On the other hand, neglecting the influence of cloud size distribution leads to systematic over-estimate of their impact on the shortwave radiation whereas the effect is close to zero in the thermal range. The overall effect of the heterogeneities is estimated to be of the order of 10 W m-2 for the conditions of that Landsat picture (solar zenith angle 65°, cloud cover 70%); it might reach 40 W m-2 for an overhead sun and overcast cloud conditions.


2019 ◽  
Vol 55 (5) ◽  
pp. 4465-4487 ◽  
Author(s):  
Franziska Koch ◽  
Patrick Henkel ◽  
Florian Appel ◽  
Lino Schmid ◽  
Heike Bach ◽  
...  

2013 ◽  
Vol 392 ◽  
pp. 90-94
Author(s):  
Ling Chen ◽  
Rui Liu ◽  
Yong Xing Cao

The ice amount accreting on the rotating multi-cylinders can be used to obtain the liquid water content (LWC) and the median volume diameter of water droplet (MVD) based on cylindrical icing model. In this model, the overall collision efficiency is usually calculated by Finstads (φ100) and Langmuirs formulations (φ<100). But this combined expression doesnt agree well with the numerical calculation in some case. This paper gives a new expression based on a large number of numerical calculation results, and this expression agrees better with the numerical computation than existing expression.


2020 ◽  
Vol 59 (9) ◽  
pp. 1537-1555
Author(s):  
István Geresdi ◽  
Lulin Xue ◽  
Noémi Sarkadi ◽  
Roy Rasmussen

AbstractThe University of Pécs and NCAR Bin (UPNB) microphysical scheme was implemented into the mesoscale Weather Research and Forecast (WRF) Model that was used to study the impact of silver iodide (AgI) seeding on precipitation formation in winter orographic clouds. Four different experimental units were chosen from the Wyoming Weather Modification Pilot Project to simulate the seeding effect. The results of the numerical experiments show the following: (i) Comparisons with the soundings, snow gauges, and microwave radiometer data indicate that the three-dimensional simulations with detailed microphysics reasonably represent both the dynamics and the microphysics of real clouds. (ii) The dispersion of the AgI particles from the simulated ground-based seeding was effective because of turbulent mixing. (iii) In the investigated cases (surface temperature is less than 0°C), surface precipitation and precipitation efficiency show low susceptibility to the concentrations of cloud condensation nuclei and natural ice nucleating particles. (iv) If the available liquid water content promotes the enhancement of the number of snowflakes by diffusional growth, the surface precipitation can be increased by more than 5%. A novel parameter relevant to orographic clouds, horizontally integrated liquid water path (LWP), was evaluated to find the relation between seeding efficiency and liquid water content. The impact of seeding is negligible if the horizontal LWP is less than 0.1 mm and is apparent if the horizontal LWP is larger than 1 mm, as based on the cases investigated in this study.


1998 ◽  
Vol 26 ◽  
pp. 103-106 ◽  
Author(s):  
Katsuhisa Kawashima ◽  
Toru Endo ◽  
Yukari Takeuchi

In order to facilitate the measurement of liquid-water content of snow in high mountains, a portable calorimeter named “Endo-type snow-water content meter” was developed. It is composed of a metal-coated container made of insulating materials and a lid of the container with a small-thermistor thermometer. Its strong points are its light weight, small size and easy fabrication with cheap materials. The total weight of the device is as light as 250 g, which is less than 10% of the snow-water content meter widely used in Japan (Akitaya-type snow-water content meter). The results of experiments have revealed that the device is capable of measuring the liquid-water content within 2 minutes with an accuracy of 2% by weight.


2018 ◽  
Author(s):  
Konrad Deetz ◽  
Heike Vogel ◽  
Sophie Haslett ◽  
Peter Knippertz ◽  
Hugh Coe ◽  
...  

Abstract. Water uptake can significantly increase the size and therefore the optical properties of aerosols. In this study, the regional-scale model framework COSMO-ART is applied to Southern West Africa (SWA) for a summer monsoon process study on 2–3 and 6–7 July 2016. The high moisture and aerosol burden in the monsoon layer makes SWA favorable to quantify properties that determine the aerosol liquid water content and its impact on radiative transfer. Given the marked diurnal cycle in SWA, the analysis is separated into three characteristic phases: (a) Atlantic Inflow progression phase (15–2 UTC), when winds from the Gulf of Guinea accelerate in the less turbulent evening and nighttime boundary layer, (b) Moist morning phase (3–8 UTC), when the passage of the Atlantic Inflow front leads to overall cool and moist conditions over land and (c) Daytime drying phase (9–15 UTC), in which the Atlantic Inflow front re-establishes with the inland heating initiated after sunrise. This diurnal cycle imprints, via the relative humidity, also the aerosol liquid water content. We analyzed the impact of relative humidity and clouds on the aerosol liquid water content. As shown by other studies, the accumulation mode particles are the dominant contributor of aerosol liquid water. We find aerosol growth factors of 2 (4) for submicron (coarse) mode particles, leading to a substantial increase of mean aerosol optical depth from 0.2 to 0.7. Considering the aerosol liquid water content leads to a decrease in shortwave radiation of about 20 W m−2, while longwave effects appear to be insignificant, especially during nighttime. The estimated relationships between total column aerosol liquid water and radiation are −305 ± 39 W g−1 (shortwave in-cloud), −114 ± 42 W g−1 (shortwave off-cloud) and about −10 W g−1 (longwave). The results highlight the need to consider the relative humidity dependency of aerosol optical depth in atmospheric models, particularly in moist tropical environments, where their effect on radiation can be very large.


Sign in / Sign up

Export Citation Format

Share Document