scholarly journals Stability analysis of the homogeneous nonlinear dynamical systems using Lyapunov function generation based on the basic functions

2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Mehdi Ansari ◽  
Vahid Meigoli ◽  
Abolhassan Razminia
2014 ◽  
Vol 534 ◽  
pp. 131-136
Author(s):  
Long Cao ◽  
Yi Hua Cao

A novel method based on numerical continuation algorithm for equilibria and stability analysis of nonlinear dynamical system is introduced and applied to an aircraft vehicle model. Dynamical systems are usually modeled with differential equations, while their equilibria and stability analysis are pure algebraic problems. The newly-proposed method in this paper provides a way to solve the equilibrium equation and the eigenvalues of the locally linearized system simultaneously, which avoids QR iterations and can save much time.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Min Wu ◽  
Zhengfeng Yang ◽  
Wang Lin

We address the problem of asymptotic stability and region-of-attraction analysis of nonlinear dynamical systems. A hybrid symbolic-numeric method is presented to compute exact Lyapunov functions and exact estimates of regions of attraction of nonlinear systems efficiently. A numerical Lyapunov function and an estimate of region of attraction can be obtained by solving an (bilinear) SOS programming via BMI solver, then the modified Newton refinement and rational vector recovery techniques are applied to obtain exact Lyapunov functions and verified estimates of regions of attraction with rational coefficients. Experiments on some benchmarks are given to illustrate the efficiency of our algorithm.


2020 ◽  
Author(s):  
Lal Mohan Saha

Chaotic phenomena and presence of complexity in various nonlinear dynamical systems extensively discussed in the context of recent researches. Discrete as well as continuous dynamical systems both considered here. Visualization of regularity and chaotic motion presented through bifurcation diagrams by varying a parameter of the system while keeping other parameters constant. In the processes, some perfect indicator of regularity and chaos discussed with appropriate examples. Measure of chaos in terms of Lyapunov exponents and that of complexity as increase in topological entropies discussed. The methodology to calculate these explained in details with exciting examples. Regular and chaotic attractors emerging during the study are drawn and analyzed. Correlation dimension, which provides the dimensionality of a chaotic attractor discussed in detail and calculated for different systems. Results obtained presented through graphics and in tabular form. Two techniques of chaos control, pulsive feedback control and asymptotic stability analysis, discussed and applied to control chaotic motion for certain cases. Finally, a brief discussion held for the concluded investigation.


Sign in / Sign up

Export Citation Format

Share Document