global stability
Recently Published Documents


TOTAL DOCUMENTS

2398
(FIVE YEARS 450)

H-INDEX

79
(FIVE YEARS 7)

2022 ◽  
Vol 65 ◽  
pp. 103501
Author(s):  
Stefania Ottaviano ◽  
Mattia Sensi ◽  
Sara Sottile

2022 ◽  
Author(s):  
Andrea Sansica ◽  
Atsushi Hashimoto ◽  
Shunsuke Koike ◽  
Toshinori Kouchi

2022 ◽  
Vol 25 ◽  
pp. 11-23
Author(s):  
Richard A. Falk

In such a complex and uncertain world, it may help to think like a Hindu, and accept contradiction as more in keeping with social and political reality than is finding a right answer to complex policy puzzles. What is almost impossible for those trained within Western frames of reference is to grasp that there are diverse perspectives of understanding that may result in seemingly contradictory recommendations despite shared values and goals. Civilizational perspectives and personal experience inevitably color what we feel, think, and do, and so being likeminded when it comes abolishing nuclear weapons is often coupled with somewhat divergent views on what to advocate when it comes to tactics and priorities. In this spirit, this paper tries to depict a set of reasons why the goal of nuclear disarmament will never be reached so long as arms control and nonproliferation of nuclear weaponry are seen as the pillars of global stability in the nuclear age.


2022 ◽  
Vol 19 (3) ◽  
pp. 2853-2875
Author(s):  
Miled El Hajji ◽  
◽  
Amer Hassan Albargi ◽  

<abstract><p>A generalized "SVEIR" epidemic model with general nonlinear incidence rate has been proposed as a candidate model for measles virus dynamics. The basic reproduction number $ \mathcal{R} $, an important epidemiologic index, was calculated using the next generation matrix method. The existence and uniqueness of the steady states, namely, disease-free equilibrium ($ \mathcal{E}_0 $) and endemic equilibrium ($ \mathcal{E}_1 $) was studied. Therefore, the local and global stability analysis are carried out. It is proved that $ \mathcal{E}_0 $ is locally asymptotically stable once $ \mathcal{R} $ is less than. However, if $ \mathcal{R} &gt; 1 $ then $ \mathcal{E}_0 $ is unstable. We proved also that $ \mathcal{E}_1 $ is locally asymptotically stable once $ \mathcal{R} &gt; 1 $. The global stability of both equilibrium $ \mathcal{E}_0 $ and $ \mathcal{E}_1 $ is discussed where we proved that $ \mathcal{E}_0 $ is globally asymptotically stable once $ \mathcal{R}\leq 1 $, and $ \mathcal{E}_1 $ is globally asymptotically stable once $ \mathcal{R} &gt; 1 $. The sensitivity analysis of the basic reproduction number $ \mathcal{R} $ with respect to the model parameters is carried out. In a second step, a vaccination strategy related to this model will be considered to optimise the infected and exposed individuals. We formulated a nonlinear optimal control problem and the existence, uniqueness and the characterisation of the optimal solution was discussed. An algorithm inspired from the Gauss-Seidel method was used to resolve the optimal control problem. Some numerical tests was given confirming the obtained theoretical results.</p></abstract>


2021 ◽  
Vol 3 (1) ◽  
pp. 17-20
Author(s):  
Tadeusz Kaczorek ◽  
Łukasz Sajewski

The global stability of positive  discrete-time time-varying nonlinear systems with time-varying scalar feedbacks is investigated. Sufficient conditions for the asymptotic stability of discrete-time positive time-varying linear systems are given. The new conditions are applied to discrete-time positive time-varying nonlinear systems with time-varying feedbacks. Sufficient conditions are established for the global stability of the discrete-time positive time-varying nonlinear systems with feedbacks.


2021 ◽  
pp. 4930-4952
Author(s):  
Wassan Hussein ◽  
Huda Abdul Satar

In this paper, an eco-epidemiological model with media coverage effect is proposed and studied. A prey-predator model with modified Leslie-Gower and functional response is studied. An  -type of disease in prey is considered.  The existence, uniqueness and boundedness of the solution of the model are discussed. The local and global stability of this system are carried out. The conditions for the persistence of all species are established. The local bifurcation in the model is studied. Finally, numerical simulations are conducted to illustrate the analytical results.


2021 ◽  
Vol 8 (2) ◽  
pp. 90
Author(s):  
Idy BA ◽  
Papa Ibrahima NDIAYE ◽  
Mahe Ndao ◽  
AboubaKary Diakhaby

Limiting resource is a angular stone of the interactions between species in ecosystems such as competition, prey-predators and food chain systems. In this paper, we propose a planar system as an extension of Lotka-Voterra competition model. This describes? two competitive species for a single resource? which are affected by intra and inter-specific interference. We give its complete analysis for the existence and local stability of all equlibria and some conditions of global stability. The model exhibits a rich set of behaviors with a multiplicity of coexistence equilibria, bi-stability, tri-stability and occurrence of global stability of the exclusion of one species and the coexistence? equilibrium. The asymptotic behavior and the number of coexistence equilibria are shown by a saddle-node bifurcation of the level of resource under conditions on competitive effects relatively to associated growth rate per unit of resource.Moreover, we determine the competition outcome in the situations of Balanced and Unbalanced intra-inter species competition effects. Finally, we illustrate results by numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document