scholarly journals Adolescent idiopathic scoliosis detection and referral trends: impact treatment options

2020 ◽  
Vol 9 (1) ◽  
pp. 75-84
Author(s):  
Alison Anthony ◽  
Reinhard Zeller ◽  
Cathy Evans ◽  
Jennifer A. Dermott

Abstract Study design Retrospective cross-sectional study. Objective To analyze the patient demographic referred for scoliosis to the Hospital for Sick Children to determine the proportion of patients suitable for brace treatment, as per the Scoliosis Research Society guidelines. Summary of background data There is level 1 evidence that bracing in adolescent idiopathic scoliosis (AIS) decreases the risk of curve progression and need for surgery, but optimal brace treatment requires early curve detection. Methods We performed a retrospective review of 618 consecutive patients who underwent initial assessment in our Spine Clinic between Jan. 1 and Dec. 31, 2014. We included children 10–18 years, with scoliosis greater than 10°, excluding those diagnosed with non-idiopathic curves. Primary outcomes were Cobb angle, menarchal status, and Risser score. We analyzed the effect of specific referral variables (family history, the person who first noticed the curve, and geographic location of residence) on presenting curve magnitude. Results During the study period, 335 children met the inclusion criteria, with an average age of 14.1 ± 1.8 years and a mean Cobb angle of 36.8 ± 14.5°. Brace treatment was indicated in 17% of patients; 18% had curves beyond optimal curve range for bracing (> 40°), and 55% were skeletally mature, therefore not brace candidates. The majority of curves (54%) were first detected by the patient or family member and averaged 7° more than curves first detected by a physician. A family history of scoliosis made no difference to curve magnitude, nor did geographic location of residence. Conclusion The majority of AIS patients present too late for effective management with bracing. Level of evidence III.

2019 ◽  
Vol 8 ◽  
pp. 216495611988772
Author(s):  
Natalya Sarkisova ◽  
Lindsay M Andras ◽  
Joshua Yang ◽  
Tracy L Zaslow ◽  
Bianca R Edison ◽  
...  

Background Fishman et al. reported that side plank poses asymmetrically strengthened the convex side of the curve and decreased primary Cobb angle by 49% among compliant patients with adolescent idiopathic scoliosis (AIS). Methods AIS patients with curves of 10° to 45° were randomized into the front plank (control) or side plank group. The side plank was performed with their curve convex down. A weekly survey monitored compliance, defined by completing poses 4 or more times a week. Results A total of 64 patients were enrolled; 34% (22 of 64) of patients (mean age = 13 years) were compliant. In the control group, there were 11 compliant patients with 6 undergoing brace treatment. At enrollment, they had a mean Cobb angle of 30° (range: 14°–40°) and mean scoliometer reading of 13°. At 6 months, they had a mean Cobb angle of 30° (range: 14°–42°) and mean scoliometer of 12°. In the side plank group, there were 11 compliant patients with 5 undergoing brace treatment. At enrollment, they had a mean Cobb angle of 32° (range: 21°–44°) and mean scoliometer reading of 12°. At 6 months, they had a mean Cobb angle of 31° (range: 17°–48°) and a mean scoliometer reading of 13°. There were no significant changes in either the control or side plank group in regards to primary Cobb angle (control: P = .53, side plank: P = .67) or scoliometer (control: P = .22, side plank: P = .45). Conclusion There were no significant changes in primary Cobb angle or scoliometer after 6 months of side plank exercises. In contrast to a prior study, there was no improvement in curve magnitude in AIS patients performing side plank exercises.


2020 ◽  
Vol 102-B (2) ◽  
pp. 254-260 ◽  
Author(s):  
Jason P. Y. Cheung ◽  
Prudence W. H. Cheung

Aims The aim of this study was to assess whether supine flexibility predicts the likelihood of curve progression in patients with adolescent idiopathic scoliosis (AIS) undergoing brace treatment. Methods This was a retrospective analysis of patients with AIS prescribed with an underarm brace between September 2008 to April 2013 and followed up until 18 years of age or required surgery. Patients with structural proximal curves that preclude underarm bracing, those who were lost to follow-up, and those who had poor compliance to bracing (<16 hours a day) were excluded. The major curve Cobb angle, curve type, and location were measured on the pre-brace standing posteroanterior (PA) radiograph, supine whole spine radiograph, initial in-brace standing PA radiograph, and the post-brace weaning standing PA radiograph. Validation of the previous in-brace Cobb angle regression model was performed. The outcome of curve progression post-bracing was tested using a logistic regression model. The supine flexibility cut-off for curve progression was analyzed with receiver operating characteristic curve. Results A total of 586 patients with mean age of 12.6 years (SD 1.2) remained for analysis after exclusion. The baseline Cobb angle was similar for thoracic major curves (31.6° (SD 3.8°)) and lumbar major curves (30.3° (SD 3.7°)). Curve progression was more common in the thoracic curves than lumbar curves with mean final Cobb angles of 40.5° (SD 12.5°) and 31.8° (SD 9.8°) respectively. This dataset matched the prediction model for in-brace Cobb angle with less mean absolute error in thoracic curves (0.61) as compared to lumbar curves (1.04). Reduced age and Risser stage, thoracic curves, increased pre-brace Cobb angle, and reduced correction and flexibility rates predicted increased likelihood of curve progression. Flexibility rate of more than 28% has likelihood of preventing curve progression with bracing. Conclusion Supine radiographs provide satisfactory prediction for in-brace correction and post-bracing curve magnitude. The flexibility of the curve is a guide to determine the likelihood for brace success. Cite this article: Bone Joint J 2020;102-B(2):254–260.


2019 ◽  
Vol 37 (2) ◽  
pp. 225-233
Author(s):  
Anderson Sales Alexandre ◽  
Evandro Fornias Sperandio ◽  
Liu Chiao Yi ◽  
Josy Davidson ◽  
Patrícia Rios Poletto ◽  
...  

ABSTRACT Objective: To evaluate the chest wall shape in patients with adolescent idiopathic scoliosis (AIS) in comparison to healthy subjects and the association between the chest wall shape with the spine deformity and lung function in patients with AIS. Methods: This cross-sectional study enrolled 30 AIS patients and 20 healthy subjects aged 11-18 years old. The Cobb angle evaluation was performed in AIS patients. The chest wall shape was assessed by the photogrammetry method, using the Postural Assessment Software (PAS). We created thoracic markers shaped as angles (A) and distances (D), as follows: A2 (right acromion/xiphoid/left acromion), A4L (angle formed between the outer point of the smallest waist circumference and its upper and lower edges on the left side), A7 (angle formed by the intersection of the tangent segments of the upper and lower scapulae angles), D1R/D1L [distance between the xiphoid process and the last false rib on the right (R) and left (L) sides], and D3 (distance between xiphoid process and anterior superior iliac spine). Results: The thoracic markers A2 and A7 were significantly higher, while the A4L and D1R/D1L were significantly reduced in the AIS group compared to the control. Moderate correlations were found between: A2 and the main and proximal thoracic Cobb angles (r=0.50, r=0.47, respectively); D1R/D1L and the main thoracic Cobb angle (r=- 0.40); and the forced expiratory volume in the first second (FEV1) and D3R (r=0.47). Conclusions: The photogrammetry method was able to detect chest wall changes in AIS patients, besides presenting correlation between Cobb angles and lung function.


2020 ◽  
pp. 219256822094883
Author(s):  
Kristóf József ◽  
Ádám Tibor Schlégl ◽  
Máté Burkus ◽  
István Márkus ◽  
Ian O’Sullivan ◽  
...  

Study Design: Retrospective cross-sectional study. Objectives: It is generally believed that the apical vertebra has the largest axial rotation in adolescent idiopathic scoliosis. We investigated the relationship between apical axial vertebral rotation (apicalAVR) and maximal axial vertebral rotation (maxAVR) in both major and minor curves using biplanar stereo-imaging. Methods: EOS 2D/3D biplanar radiograph images were collected from 332 patients with adolescent idiopathic scoliosis (Cobb angle range 10°-122°, mean age 14.7 years). Based on the X-ray images, with the help of 3D full spine reconstructions Cobb angle, curvature level, apicalAVR and maxAVR were determined. These parameters were also determined for minor curves in Lenke 2, 3, 4, 6 type patients. Maximal thoracic rotation and maximal thoracolumbar/lumbar rotation were calculated. Statistical analysis was performed with descriptive statistics, Shapiro-Wilk test, and Wilcoxon signed-rank test. Results: The apical vertebrae were the most rotated vertebra in only 40.4% of the major curves, and 31.7% in minor curves. MaxAVR significantly exceeded apicalAVR values in the major curves ( P < .001) as well as in minor curves ( P < .001). The 2 parameters differed significantly in each severity group and Lenke type. Conclusions: The apical vertebrae were not the most rotated vertebra in more than half of cases investigated indicating that apicalAVR and maxAVR should be considered as 2 distinct parameters, of which maxAVR fully describes the axial dimension of scoliosis. Furthermore, the substitution of maxAVR for the apicalAVR should be especially avoided in double and triple curves, as the apical vertebra was even less commonly the most rotated in minor curves.


2021 ◽  
Author(s):  
Trixie Mak ◽  
Prudence Wing Hang Cheung ◽  
Teng Zhang ◽  
Jason Pui Yin Cheung

Abstract Background: Thoracic scoliosis has been shown to be associated with hypokyphosis in adolescent idiopathic scoliosis (AIS). However, the relationship of sagittal spino-pelvic parameters with different coronal curve patterns and their influence on patient-perceived quality of life is unknown. This study aims to determine the association between coronal and sagittal malalignment in patients with AIS and to determine their effects on SRS-22r scores. Methods: A cross-sectional study was conducted on 1054 consecutive patients with AIS. The coronal Cobb angle, thoracic kyphosis (TK), lumbar lordosis (LL), pelvic incidence (PI), PI-LL mismatch (PI-LL), pelvic tilt (PT), and sacral slope (SS) were measured on standing radiographs. The coronal Cobb angle (mild: 10-20°; moderate: >20-40°; severe: >40°) and PI (low: <35°; average: 35-50°; high: >50°) were divided into 3 sub-groups for comparison. Relationship between coronal curve magnitudes and sagittal parameters was studied as was their association with SRS-22r scores. Results: Low PI had smaller SS (30.1±8.3° vs 44.8±7.7°; p<0.001), PT (-0.3±8.1° vs 14.4±7.5°; p<0.001), and LL (42.0±13.2° vs 55.1±10.6°; p<0.001), negative PI-LL mismatch (-12.1±13.1° vs 4.1±10.5°; p<0.001) as compared to large PI. There were no significant relationships with PI and TK (p=0.905) or curve magnitude (p=0.431). No differences in sagittal parameters were observed for mild, moderate or severe coronal Cobb angles. SRS-22r scores only correlated with coronal Cobb angle and larger Cobb angles were negatively correlated with the function, appearance and pain domains. Conclusions: The sagittal profile for AIS is associated with the pelvic parameters especially PI but not with the coronal curve pattern. All patients have a similar TK regardless of coronal curve type. However, it appears that the coronal deformity is a greater influence on quality of life outcomes especially those >40°.


Scoliosis ◽  
2014 ◽  
Vol 9 (Suppl 1) ◽  
pp. O22
Author(s):  
Toru Maruyama ◽  
Yosuke Kobayashi ◽  
Makoto Miura ◽  
Yuske Nakao

2021 ◽  
pp. 219256822110325
Author(s):  
Sachiko Kawasaki ◽  
Prudence Wing Hang Cheung ◽  
Hideki Shigematsu ◽  
Masato Tanaka ◽  
Yuma Suga ◽  
...  

Study Design: Retrospective cohort study. Objective: To determine the prevalence of missed curve progression in patients with adolescent idiopathic scoliosis (AIS) undergoing brace treatment with only in-brace follow-up radiographs, and to provide recommendations on when in-brace and out-of-brace should be obtained during follow-up. Methods: 133 patients who had documented clinically significant curve progression during brace treatment or only when an out-of-brace radiograph were studied. Of these, 95 patients (71.4%) had curve progression noted on in-brace radiographs while 38 patients (28.6%) showed curve progression only after brace removal. We analyzed differences in age, sex, curve types, Risser stage, months after menarche, standing out-of-brace Cobb angle, correction rate, and flexibility rate between the groups. Multivariate logistic regression was performed to determine factors contributing to curve progression missed during brace treatment. Results: There were no differences in initial Cobb angle between out-of-brace and in-brace deterioration groups. However, the correction rate was higher (32.7% vs 25.0%; P = .004) in the in-brace deterioration group as compared to the out-of-brace deterioration group. A lower correction rate was more likely to result in out-of-brace deterioration (OR 0.970; P = .019). For thoracic curves, higher flexibility in the curves was more likely to result in out-of-brace deterioration (OR 1.055; P = .045). For double/triple curves, patients with in-brace deterioration had higher correction rate (OR 0.944; P = .034). Conclusions: Patients may develop curve progression despite good correction on in-brace radiographs. Those with higher flexibility and suboptimal brace fitting are at-risk. In-brace and out-of-brace radiographs should be taken alternately for brace treatment follow-up.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Trixie Mak ◽  
Prudence Wing Hang Cheung ◽  
Teng Zhang ◽  
Jason Pui Yin Cheung

Abstract Background Thoracic scoliosis has been shown to be associated with hypokyphosis in adolescent idiopathic scoliosis (AIS). However, the relationship of sagittal spino-pelvic parameters with different coronal curve patterns and their influence on patient-perceived quality of life is unknown. This study aims to determine the association between coronal and sagittal malalignment in patients with AIS and to determine their effects on SRS-22r scores. Methods A cross-sectional study was conducted on 1054 consecutive patients with AIS. The coronal Cobb angle, thoracic kyphosis (TK), lumbar lordosis (LL), pelvic incidence (PI), PI-LL mismatch (PI-LL), pelvic tilt (PT), and sacral slope (SS) were measured on standing radiographs. The coronal Cobb angle (mild: 10–20°; moderate: > 20–40°; severe: > 40°) and PI (low: < 35°; average: 35–50°; high: > 50°) were divided into 3 sub-groups for comparison. Relationship between coronal curve magnitudes and sagittal parameters was studied as was their association with SRS-22r scores. Results Low PI had smaller SS (30.1 ± 8.3° vs 44.8 ± 7.7°; p < 0.001), PT (− 0.3 ± 8.1° vs 14.4 ± 7.5°; p < 0.001), and LL (42.0 ± 13.2° vs 55.1 ± 10.6°; p < 0.001), negative PI-LL mismatch (− 12.1 ± 13.1° vs 4.1 ± 10.5°; p < 0.001) as compared to large PI. There were no significant relationships with PI and TK (p = 0.905) or curve magnitude (p = 0.431). No differences in sagittal parameters were observed for mild, moderate or severe coronal Cobb angles. SRS-22r scores only correlated with coronal Cobb angle and larger Cobb angles were negatively correlated with the function, appearance and pain domains. Conclusions The sagittal profile for AIS is associated with the pelvic parameters especially PI but not with the coronal curve pattern. All patients have a similar TK regardless of coronal curve type. However, it appears that the coronal deformity is a greater influence on quality of life outcomes especially those > 40°.


2017 ◽  
Vol 30 (2) ◽  
pp. 85-89 ◽  
Author(s):  
Zezhang Zhu ◽  
Leilei Xu ◽  
Long Jiang ◽  
Xu Sun ◽  
Jun Qiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document