scholarly journals Maximal Axial Vertebral Rotation in Adolescent Idiopathic Scoliosis: Is the Apical Vertebra the Most Rotated?

2020 ◽  
pp. 219256822094883
Author(s):  
Kristóf József ◽  
Ádám Tibor Schlégl ◽  
Máté Burkus ◽  
István Márkus ◽  
Ian O’Sullivan ◽  
...  

Study Design: Retrospective cross-sectional study. Objectives: It is generally believed that the apical vertebra has the largest axial rotation in adolescent idiopathic scoliosis. We investigated the relationship between apical axial vertebral rotation (apicalAVR) and maximal axial vertebral rotation (maxAVR) in both major and minor curves using biplanar stereo-imaging. Methods: EOS 2D/3D biplanar radiograph images were collected from 332 patients with adolescent idiopathic scoliosis (Cobb angle range 10°-122°, mean age 14.7 years). Based on the X-ray images, with the help of 3D full spine reconstructions Cobb angle, curvature level, apicalAVR and maxAVR were determined. These parameters were also determined for minor curves in Lenke 2, 3, 4, 6 type patients. Maximal thoracic rotation and maximal thoracolumbar/lumbar rotation were calculated. Statistical analysis was performed with descriptive statistics, Shapiro-Wilk test, and Wilcoxon signed-rank test. Results: The apical vertebrae were the most rotated vertebra in only 40.4% of the major curves, and 31.7% in minor curves. MaxAVR significantly exceeded apicalAVR values in the major curves ( P < .001) as well as in minor curves ( P < .001). The 2 parameters differed significantly in each severity group and Lenke type. Conclusions: The apical vertebrae were not the most rotated vertebra in more than half of cases investigated indicating that apicalAVR and maxAVR should be considered as 2 distinct parameters, of which maxAVR fully describes the axial dimension of scoliosis. Furthermore, the substitution of maxAVR for the apicalAVR should be especially avoided in double and triple curves, as the apical vertebra was even less commonly the most rotated in minor curves.

2006 ◽  
Vol 30 (2) ◽  
pp. 136-144
Author(s):  
W. C. W. Chu ◽  
M. S. Wong ◽  
W. W. Chau ◽  
T. P. Lam ◽  
K. W. Ng ◽  
...  

In this pilot cross-sectional study, the effectiveness of rigid spinal orthoses in the correction of spinal curvature of 14 patients with moderate adolescent idiopathic scoliosis (AIS) at different recumbent positions (supine, prone, right and left decubitus) was investigated. Using magnetic resonance (MR) imaging and multi-planar reconstruction technique, evaluation of the scoliotic spine in the coronal, sagittal and axial planes and the effect of spinal orthosis on AIS at different recumbent positions was studied. There was significant reduction of coronal Cobb's angle ( p < 0.05) with bracing at all four recumbent positions and the maximal reduction was found in the prone position (18% reduction). The sagittal Cobb's angle was only significantly reduced at the supine position while the axial rotation did not change significantly in all positions.


Author(s):  
X Wang ◽  
CE Aubin ◽  
RM Schwend

The objective was to assess deformity correction and bone-screw force associated respectively with concave manipulation first, convex manipulation first, and different differential rod contouring configurations. Instrumentation scenarios were computationally simulated for 10 AIS cases with mean thoracic Cobb angle (MT) of 54±8°, apical vertebral rotation (AVR) of 19±2° and thoracic kyphosis of 21±9°. Instrumentations with major correction maneuvers using the concave side rod were first simulated; instrumentations with major correction maneuvers using the convex side rod were then simulated. Simulated correction maneuvers were concave/convex rod translation followed by apical vertebral derotation and then convex/concave rod translation. There were no significant differences in deformity corrections and bone-screw forces between concave rod translation first and convex rod translation first with differential rod contouring. Increasing differential rod contouring angle and concave rod diameter improved AVR correction and increased the TK and bone-screw forces; the effect on the MT Cobb angle was not clinically significant.


2019 ◽  
Vol 37 (2) ◽  
pp. 225-233
Author(s):  
Anderson Sales Alexandre ◽  
Evandro Fornias Sperandio ◽  
Liu Chiao Yi ◽  
Josy Davidson ◽  
Patrícia Rios Poletto ◽  
...  

ABSTRACT Objective: To evaluate the chest wall shape in patients with adolescent idiopathic scoliosis (AIS) in comparison to healthy subjects and the association between the chest wall shape with the spine deformity and lung function in patients with AIS. Methods: This cross-sectional study enrolled 30 AIS patients and 20 healthy subjects aged 11-18 years old. The Cobb angle evaluation was performed in AIS patients. The chest wall shape was assessed by the photogrammetry method, using the Postural Assessment Software (PAS). We created thoracic markers shaped as angles (A) and distances (D), as follows: A2 (right acromion/xiphoid/left acromion), A4L (angle formed between the outer point of the smallest waist circumference and its upper and lower edges on the left side), A7 (angle formed by the intersection of the tangent segments of the upper and lower scapulae angles), D1R/D1L [distance between the xiphoid process and the last false rib on the right (R) and left (L) sides], and D3 (distance between xiphoid process and anterior superior iliac spine). Results: The thoracic markers A2 and A7 were significantly higher, while the A4L and D1R/D1L were significantly reduced in the AIS group compared to the control. Moderate correlations were found between: A2 and the main and proximal thoracic Cobb angles (r=0.50, r=0.47, respectively); D1R/D1L and the main thoracic Cobb angle (r=- 0.40); and the forced expiratory volume in the first second (FEV1) and D3R (r=0.47). Conclusions: The photogrammetry method was able to detect chest wall changes in AIS patients, besides presenting correlation between Cobb angles and lung function.


2020 ◽  
Vol 9 (1) ◽  
pp. 75-84
Author(s):  
Alison Anthony ◽  
Reinhard Zeller ◽  
Cathy Evans ◽  
Jennifer A. Dermott

Abstract Study design Retrospective cross-sectional study. Objective To analyze the patient demographic referred for scoliosis to the Hospital for Sick Children to determine the proportion of patients suitable for brace treatment, as per the Scoliosis Research Society guidelines. Summary of background data There is level 1 evidence that bracing in adolescent idiopathic scoliosis (AIS) decreases the risk of curve progression and need for surgery, but optimal brace treatment requires early curve detection. Methods We performed a retrospective review of 618 consecutive patients who underwent initial assessment in our Spine Clinic between Jan. 1 and Dec. 31, 2014. We included children 10–18 years, with scoliosis greater than 10°, excluding those diagnosed with non-idiopathic curves. Primary outcomes were Cobb angle, menarchal status, and Risser score. We analyzed the effect of specific referral variables (family history, the person who first noticed the curve, and geographic location of residence) on presenting curve magnitude. Results During the study period, 335 children met the inclusion criteria, with an average age of 14.1 ± 1.8 years and a mean Cobb angle of 36.8 ± 14.5°. Brace treatment was indicated in 17% of patients; 18% had curves beyond optimal curve range for bracing (> 40°), and 55% were skeletally mature, therefore not brace candidates. The majority of curves (54%) were first detected by the patient or family member and averaged 7° more than curves first detected by a physician. A family history of scoliosis made no difference to curve magnitude, nor did geographic location of residence. Conclusion The majority of AIS patients present too late for effective management with bracing. Level of evidence III.


2019 ◽  
Vol 31 (6) ◽  
pp. 873-879
Author(s):  
Chris Labaki ◽  
Joeffroy Otayek ◽  
Abir Massaad ◽  
Ziad Bakouny ◽  
Mohammad Karam ◽  
...  

OBJECTIVEThe aim of this study was to determine if the apical vertebra (AV) in patients with adolescent idiopathic scoliosis (AIS) is the most rotated vertebra in the scoliotic segment.METHODSA total of 158 patients with AIS (Cobb angle range 20°–101°) underwent biplanar radiography with 3D reconstructions of the spine and calculation of vertebral axial rotations. The type of major curvature was recorded (thoracic, thoracolumbar, or lumbar), and both major and minor curvatures were included. The difference of levels (DL) between the level of maximal vertebral rotation (LMVR) and the AV was calculated as follows: DL = 0 if LMVR and AV were the same, DL = 1 if LMVR was directly above or below the AV, and DL = 2 if LMVR was separated by 1 vertebra or more from the AV. To investigate which factors explained the divergence of the LMVR from the AV, multinomial models were computed.RESULTSThe distribution of the DL was as follows: for major curvatures, 143 were DL = 0, 11 were DL = 1, and 4 were DL = 2; and for minor curvatures, 53 were DL = 0, 9 were DL = 1, and 31 were DL = 2. The determinants of a DL = 2 (compared with DL = 0) were lumbar curvature (compared with thoracic; adjusted OR 0.094, p = 0.001), major curvature (compared with minor; adjusted OR 0.116, p = 0.001), and curvatures with increasing apical vertebral rotation (adjusted OR 0.788, p < 0.001).CONCLUSIONSThis study showed that the AV is the most rotated vertebra in the majority of major curvatures, while in minor curvatures, the most rotated vertebra appears to be the junctional vertebra between major and minor curvatures in a significant proportion of cases.


2020 ◽  
Vol 77 (4) ◽  
pp. 269-280
Author(s):  
Joanna Głowacka ◽  
Justyna Opydo-Szymaczek ◽  
Katarzyna Mehr ◽  
Tamara Pawlaczyk-Kamieńska ◽  
Jakub Głowacki

Sign in / Sign up

Export Citation Format

Share Document