scholarly journals From Circular to Linear? Assessing the Life Cycle Environmental and Economic Sustainability of Steel and Plastic Beer Kegs

Author(s):  
Michael Martin ◽  
Sjoerd Herlaar ◽  
Aiden Jönsson ◽  
David Lazarevic

AbstractIn the craft brewing industry, kegging solutions have changed dramatically in recent years. While steel kegs once dominated the draught beer market, single-use plastic kegs have increased in popularity due to their convenience, especially in the craft brewing sector. With the increasing importance of the circular economy and the introduction of policies in Europe to move away from single-use plastic systems, this study aims to assess and compare the sustainability of conventional steel and single-use plastic kegs. The environmental and economic performance are assessed through life cycle assessment and life cycle costing approaches. The results suggest that steel kegs have better environmental performance and life cycle costs. However, these are limited to the local markets, and with larger distances, plastic kegs may become the better option due to their lower weight, suggesting that both kegs are useful in certain situations. This is especially important in countries that have long distances between breweries and their markets. The importance of extending the lifetime of the keg fleet is also highlighted to improve the environmental performance as the results are influenced by the assumption on the lifetime of the steel kegs. To improve the environmental performance of plastic kegs, efficient closed-loop recycling systems should be developed. Careful decision-making is needed to ensure that more sustainable packaging options are chosen for draught beer and that sustainability aspects be taken into account beyond convenience.

2021 ◽  
Vol 1 ◽  
pp. 1333-1342
Author(s):  
Núria Boix Rodríguez ◽  
Marco Marconi ◽  
Claudio Favi ◽  
Giovanni Formentini

AbstractFace masks are currently considered essential devices that people must wear today and in the near future, until the COVID-19 pandemic will be completely defeated through specific medicines and vaccines. Such devices are generally made of thermoplastic polymers, as polypropylene and polyethylene and are single use products. Even if in this period the sanitary emergency must have the maximum priority, the world society should not completely forget the environmental problem that are causing more and more obvious climate changes with correlated damages to ecosystems and human health. Despite the well-known correlation among anti-COVID protective equipment (or more generally medical devices) and environmental issues, the Life Cycle Assessment (LCA) and eco-design-based studies in this field is very scarce. The present study aims to derive the most important environmental criticalities of such products, by using LCA and product circularity indicators of five different common masks. The final aim is to provide eco-design guidelines, useful to design new face masks by preventing negative impact on the environment.


2013 ◽  
Vol 136 (2) ◽  
Author(s):  
Wu-Hsun Chung ◽  
Gül E. Okudan Kremer ◽  
Richard A. Wysk

As environmental concerns have grown in recent years, the interest in product design for the life cycle (DFLC) has exhibited a parallel surge. Modular design has the potential to bring life cycle considerations into the product architecture decision-making process, yet most current modular design methods lack the capability for assessing module life cycle consequences in a supply chain. This paper proposes a method for product designers, called the architecture and supply chain evaluation method (ASCEM), to find a product modular architecture with both low life cycle costs and low energy consumption at the early design stages. ASCEM expands the assessment scope from the product's architecture to its supply chain network. This work analyzes the life cycle costs (LCCs) and energy consumption (LCEC) of two products designated within the European Union's directive on waste of electric and electronic equipment (WEEE) within a closed-loop supply chain to identify the most beneficial modular structure. In addition, data on 27 theoretical cases representing various products are analyzed to show the broader applicability of the proposed methodology. Our analysis shows that ASCEM can efficiently identify a good-quality modular structure having low LCC and LCEC in a closed-loop supply chain for both the two tested products and the hypothetical cases.


Author(s):  
Wuhsun Chung ◽  
Gu¨l E. Okudan ◽  
Richard A. Wysk

Growing concerns for the environment should make every designer more carefully consider product design for the life cycle (DFLC). Although modularity is recognized for its potential to incorporate life cycle considerations into product architecture design, most modular design methods in the literature concentrate on generating highly-modular product architectures but lack the capability for assessing life cycle consequences of these modules in a supply chain. This paper proposes a methodology to find a robust modular architecture with minimal life cycle costs and environmental impacts at the design configuration stage. The objective of the proposed methodology is not to maximize modularity, but to adopt life cycle costing and life cycle assessment of a product in a closed-loop supply chain to identify the most beneficial modular structure. Further, capacity influence of the existing processing facilities in the supply chain on life cycle costs and environmental impacts is evaluated and discussed in this paper.


2011 ◽  
Vol 42 (11) ◽  
pp. 1694-1709 ◽  
Author(s):  
Robert A. Witik ◽  
Jérôme Payet ◽  
Véronique Michaud ◽  
Christian Ludwig ◽  
Jan-Anders E. Månson

2020 ◽  
pp. 161-165
Author(s):  
Bertram de Crom ◽  
Jasper Scholten ◽  
Janjoris van Diepen

To get more insight in the environmental performance of the Suiker Unie beet sugar, Blonk Consultants performed a comparative Life Cycle Assessment (LCA) study on beet sugar, cane sugar and glucose syrup. The system boundaries of the sugar life cycle are set from cradle to regional storage at the Dutch market. For this study 8 different scenarios were evaluated. The first scenario is the actual sugar production at Suiker Unie. Scenario 2 until 7 are different cane sugar scenarios (different countries of origin, surplus electricity production and pre-harvest burning of leaves are considered). Scenario 8 concerns the glucose syrup scenario. An important factor in the environmental impact of 1kg of sugar is the sugar yield per ha. Total sugar yield per ha differs from 9t/ha sugar for sugarcane to 15t/ha sugar for sugar beet (in 2017). Main conclusion is that the production of beet sugar at Suiker Unie has in general a lower impact on climate change, fine particulate matter, land use and water consumption, compared to cane sugar production (in Brazil and India) and glucose syrup. The impact of cane sugar production on climate change and water consumption is highly dependent on the country of origin, especially when land use change is taken into account. The environmental impact of sugar production is highly dependent on the co-production of bioenergy, both for beet and cane sugar.


2003 ◽  
Author(s):  
Shayne Brannman ◽  
Eric W. Christensen ◽  
Ronald H. Nickel ◽  
Cori Rattelman ◽  
Richard D. Miller

Sign in / Sign up

Export Citation Format

Share Document