Role of messenger RNA in binding of peptidyl transfer RNA to 30-S and 50-S ribosomal subunits

Author(s):  
J. Jonák ◽  
I. Rychlík
1975 ◽  
Vol 67 (1) ◽  
pp. 25-37 ◽  
Author(s):  
B Mechler ◽  
P Vassalli

Mild ribonuclease treatment of the membrane fraction of P3K cells released three types of membrane-bound ribosomal particles: (a) all the newly made native 40S subunits detected after 2 h of [3H]uridine pulse. Since after a 3-min pulse with [35S]methionine these membrane native subunits appear to contain at least sevenfold more Met-tRNA per particle than the free native subunits, they may all be initiation complexes with mRNA molecules which have just become associated with the membranes; (b) about 50% of the ribosomes present in polyribosomes. Evidence is presented that the released ribosomes carry nascent chains about two and a half to three times shorter than those present on the ribosomes remaining bound to the membranes. It is proposed that in the membrane-bound polyribosomes of P3K cells, only the ribosomes closer to the 3' end of the mRNA molecules are directly bound, while the latest ribosomes to enter the polyribosomal structures are indirectly bound through the mRNA molecules; (c) a small number of 40S subunits of polyribosomal origin, presumably initiation complexes attached at the 5' end of mRNA molecules of polyribosomes. When the P3K cells were incubated with inhibitors acting at different steps of protein synthesis, it was found that puromycin and pactamycin decreased by about 40% the proportion of ribosomes in the membrane fraction, while cycloheximide and anisomycin had no such effect. The ribosomes remaining on the membrane fraction of puromycin-treated cells consisted of a few polyribosomes, and of an accumulation of 80S and 60S particles, which were almost entirely released by high salt treatment of the membranes. The membrane-bound ribosomes found after pactamycin treatment consisted of a few polyribosomes, with a striking accumulation of native 60S subunits and an increased number of native 40S subunits. On the basis of the observations made in this and the preceding papers, a model for the binding of ribosomes to membranes and for the ribosomal cycle on the membranes is proposed. It is suggested that ribosomal subunits exchange between free and membrane-bound polyribosomes through the cytoplasmic pool of free native subunits, and that their entry into membrane-bound ribosomes is mediated by mRNA molecules associated with membranes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ravi Kiran Koripella ◽  
Ayush Deep ◽  
Ekansh K. Agrawal ◽  
Pooja Keshavan ◽  
Nilesh K. Banavali ◽  
...  

AbstractRibosomes are recycled for a new round of translation initiation by dissociation of ribosomal subunits, messenger RNA and transfer RNA from their translational post-termination complex. Here we present cryo-EM structures of the human 55S mitochondrial ribosome (mitoribosome) and the mitoribosomal large 39S subunit in complex with mitoribosome recycling factor (RRFmt) and a recycling-specific homolog of elongation factor G (EF-G2mt). These structures clarify an unusual role of a mitochondria-specific segment of RRFmt, identify the structural distinctions that confer functional specificity to EF-G2mt, and show that the deacylated tRNA remains with the dissociated 39S subunit, suggesting a distinct sequence of events in mitoribosome recycling. Furthermore, biochemical and structural analyses reveal that the molecular mechanism of antibiotic fusidic acid resistance for EF-G2mt is markedly different from that of mitochondrial elongation factor EF-G1mt, suggesting that the two human EF-Gmts have evolved diversely to negate the effect of a bacterial antibiotic.


2020 ◽  
Author(s):  
Ravi Kiran Koripella ◽  
Ayush Deep ◽  
Ekansh K. Agrawal ◽  
Pooja Keshavan ◽  
Nilesh K. Banavali ◽  
...  

AbstractRibosomes are recycled for a new round of translation initiation by dissociation of ribosomal subunits, messenger RNA and transfer RNA from their translational post-termination complex. Mitochondrial ribosome recycling factor (RRFmt) and a recycling-specific homolog of elongation factor G (EF-G2mt) are two proteins with mitochondria-specific additional sequences that catalyze the recycling step in human mitochondria. We have determined high-resolution cryo-EM structures of the human 55S mitochondrial ribosome (mitoribosome) in complex with RRFmt, and the mitoribosomal large 39S subunit in complex with both RRFmt and EF-G2mt. In addition, we have captured the structure of a short-lived intermediate state of the 55S•RRFmt•EF-G2mt complex. These structures clarify the role of a mitochondria-specific segment of RRFmt in mitoribosome recycling, identify the structural distinctions between the two isoforms of EF-Gmt that confer their functional specificity, capture recycling-specific conformational changes in the L7/L12 stalk-base region, and suggest a distinct mechanistic sequence of events in mitoribosome recycling. Furthermore, biochemical and structural assessments of the sensitivity of EF-G2mt to the antibiotic fusidic acid reveals that the molecular mechanism of antibiotic resistance for EF-G2mt is markedly different from that exhibited by mitochondrial elongation factor EF-G1mt, suggesting that these two homologous mitochondrial proteins have evolved diversely to negate the effect of a bacterial antibiotics.


2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Baoyun Zhang ◽  
Long Chen ◽  
Guangde Feng ◽  
Wei Xiang ◽  
Ke Zhang ◽  
...  

Ovaries, which provide a place for follicular development and oocyte maturation, are important organs in female mammals. Follicular development is complicated physiological progress mediated by various regulatory factors including microRNAs (miRNAs). To demonstrate the role of miRNAs in follicular development, this study analyzed the expression patterns of miRNAs in granulosa cells through investigating three previous datasets generated by Illumina miRNA deep sequencing. Furthermore, via bioinformatic analyses, we dissected the associated functional networks of the observed significant miRNAs, in terms of interacting with signal pathways and transcription factors. During the growth and selection of dominant follicles, 15 dysregulated miRNAs and 139 associated pathways were screened out. In comparison of different styles of follicles, 7 commonly abundant miRNAs and 195 pathways, as well as 10 differentially expressed miRNAs and 117 pathways in dominant follicles in comparison with subordinate follicles, were collected. Furthermore, SMAD2 was identified as a hub factor in regulating follicular development. The regulation of miR-26a/b onsmad2messenger RNA has been further testified by real time PCR. In conclusion, we established functional networks which play critical roles in follicular development including pivotal miRNAs, pathways, and transcription factors, which contributed to the further investigation about miRNAs associated with mammalian follicular development.


2012 ◽  
Vol 23 (1) ◽  
pp. 22-35 ◽  
Author(s):  
Barbara Widmann ◽  
Franziska Wandrey ◽  
Lukas Badertscher ◽  
Emanuel Wyler ◽  
Jens Pfannstiel ◽  
...  

RIO proteins form a conserved family of atypical protein kinases. Humans possess three distinct RIO kinases—hRio1, hRio2, and hRio3, of which only hRio2 has been characterized with respect to its role in ribosomal biogenesis. Here we show that both hRio1 and hRio3, like hRio2, are associated with precursors of 40S ribosomal subunits in human cells. Furthermore, we demonstrate that depletion of hRio1 by RNA interference affects the last step of 18S rRNA maturation and causes defects in the recycling of several trans-acting factors (hEnp1, hRio2, hLtv1, hDim2/PNO1, and hNob1) from pre-40S subunits in the cytoplasm. Although the effects of hRio1 and hRio2 depletion are similar, we show that the two kinases are not fully interchangeable. Moreover, rescue experiments with a kinase-dead mutant of hRio1 revealed that the kinase activity of hRio1 is essential for the recycling of the endonuclease hNob1 and its binding partner hDim2 from cytoplasmic pre-40S. Kinase-dead hRio1 is trapped on pre-40S particles containing hDim2 and hNob1 but devoid of hEnp1, hLtv1, and hRio2. These data reveal a role of hRio1 in the final stages of cytoplasmic pre-40S maturation.


Sign in / Sign up

Export Citation Format

Share Document