scholarly journals Membrane-bound ribosomes of myeloma cells. III. The role of the messenger RNA and the nascent polypeptide chain in the binding of ribosomes to membranes.

1975 ◽  
Vol 67 (1) ◽  
pp. 25-37 ◽  
Author(s):  
B Mechler ◽  
P Vassalli

Mild ribonuclease treatment of the membrane fraction of P3K cells released three types of membrane-bound ribosomal particles: (a) all the newly made native 40S subunits detected after 2 h of [3H]uridine pulse. Since after a 3-min pulse with [35S]methionine these membrane native subunits appear to contain at least sevenfold more Met-tRNA per particle than the free native subunits, they may all be initiation complexes with mRNA molecules which have just become associated with the membranes; (b) about 50% of the ribosomes present in polyribosomes. Evidence is presented that the released ribosomes carry nascent chains about two and a half to three times shorter than those present on the ribosomes remaining bound to the membranes. It is proposed that in the membrane-bound polyribosomes of P3K cells, only the ribosomes closer to the 3' end of the mRNA molecules are directly bound, while the latest ribosomes to enter the polyribosomal structures are indirectly bound through the mRNA molecules; (c) a small number of 40S subunits of polyribosomal origin, presumably initiation complexes attached at the 5' end of mRNA molecules of polyribosomes. When the P3K cells were incubated with inhibitors acting at different steps of protein synthesis, it was found that puromycin and pactamycin decreased by about 40% the proportion of ribosomes in the membrane fraction, while cycloheximide and anisomycin had no such effect. The ribosomes remaining on the membrane fraction of puromycin-treated cells consisted of a few polyribosomes, and of an accumulation of 80S and 60S particles, which were almost entirely released by high salt treatment of the membranes. The membrane-bound ribosomes found after pactamycin treatment consisted of a few polyribosomes, with a striking accumulation of native 60S subunits and an increased number of native 40S subunits. On the basis of the observations made in this and the preceding papers, a model for the binding of ribosomes to membranes and for the ribosomal cycle on the membranes is proposed. It is suggested that ribosomal subunits exchange between free and membrane-bound polyribosomes through the cytoplasmic pool of free native subunits, and that their entry into membrane-bound ribosomes is mediated by mRNA molecules associated with membranes.

1975 ◽  
Vol 67 (1) ◽  
pp. 16-24 ◽  
Author(s):  
B Mechler ◽  
P Vassalli

The kinetics of appearance of newly made 60S and 40S ribosomal subunits in the free and membrane-bound ribosomal particles of P3K cells were explored by determining the specific radioactivities of their 18S and 28S RNA after various lengths of [3H]uridine pulse. Both 40S and 60S subunits enter free and membrane-bound polyribosomes at comparable rates from the cytoplasmic pool of newly made, free native subunits, the 40S subunits entering the native subunit pool and the polyribosomes slightly earlier than the 60S subunits. At all times, the specific radioactivity of the membrane-bound native 60S subunits was slightly lower than that of the polyribosomal 60S subunits. This indicates that the membrane-bound native 60S subunits are not precursors destined to enter membrane-bound polyribosomes and suggests that they result from the dissociation of ribosomes after chain termination. The results observed also suggest that the membrane-bound native 60S subunits are not reutilized before their release from the membranes, which probably takes place shortly after dissociation from their 40S subunits. The monoribosomes, both free and membrane-bound, had the lowest specific radioactivities in their subunits. Finally, a small amount of newly made native 40S subunits, containing 18S RNA of high specific radioactivity, and apparently also newly made messenger RNA were detected on the membranes. The high turnover of these membrane-bound native 40S subunits suggests that they may represent initiation complexes formed with mRNA which has just reached the membranes and which has not yet given rise to polyribosomes.


1976 ◽  
Vol 71 (1) ◽  
pp. 307-313 ◽  
Author(s):  
M Adesnik ◽  
M Lande ◽  
T Martin ◽  
D D Sabatini

Membrane-bound ribosomes and messenger RNA remained associated with the microsomal membranes of human fibroblasts after cultures were treated with Verrucarin A, an inhibitor of initiation which led to extensive run-off of ribosomes from polysomal structures. When a membrane fraction from Verrucarin-treated cells containing such inactive ribosomes and mRNA was suspended in a medium of high salt concentration, extensive release of ribosomal subunits occurred without the need for puromycin. The mRNA nevertheless remained associated with the membranes. These results add support to the conclusion that, in human fibroblasts, mRNA is bound directly to ER membranes, independently of the ribosomes and nascent polypeptide chains.


1982 ◽  
Vol 204 (1) ◽  
pp. 197-202 ◽  
Author(s):  
G Cairo ◽  
L Schiaffonati ◽  
M G Aletti ◽  
A Bernelli-Zazzera

In liver cells recovering from reversible ischaemia, total protein synthesis by postmitochondrial supernatant and membrane-bound and free polyribosomes is not different from that in sham-operated controls. However, the relative proportion of specific proteins is changed, since the incorporation of [3H]leucine in vivo into liver albumin, relative to incorporation into total protein, as determined by precipitation of labelled albumin with the specific antibody, decreases by 40-50% in post-ischaemic livers. Cell-free synthesis by membrane-bound polyribosomes and poly(A)-enriched RNA isolated from unfractionated liver homogenate shows that the decrease in albumin synthesis in liver of rats recovering from ischaemia is due to the relative decrease in translatable albumin mRNA.


1982 ◽  
Vol 60 (5) ◽  
pp. 580-585 ◽  
Author(s):  
Réal Lemieux ◽  
Claude Godin

Rabbit reticulocyte membrane-bound ribosomes liberated by deoxycholate treatment contain degraded forms of ribosomal and messenger RNA. This degradation occurs after the liberation of the ribosomes from the membranes by the detergent because intact ribosomal and messenger RNA can be extracted from washed membranes by phenol treatment. Increasing the ionic strength of the detergent buffer prevents this RNA degradation and allows the recovery of membrane-bound ribosomes capable of protein synthesis. Comparison of the proteins synthesized in vitro by the polyribosomes shows that the main protein produced by both free and membrane-bound ribosomes is globin. However, the two types of polyribosomes could be distinguished by the nonglobin proteins they produce.


1973 ◽  
Vol 74 (Suppl) ◽  
pp. S192-S224 ◽  
Author(s):  
J. R. Tata

ABSTRACT The role of secretion of proteins for the attachment of ribosomes to membranes has been well established. That another function must exist for membrane-ribosome interaction is suggested by observations on: (a) the active synthesis of proteins on membrane-bound ribosomes of predominantly non-protein secreting cells, and b) the massive proliferation of membrane-bound ribosomes during active growth and development of both secretory and non-secretory tissues. Literature on functional and compositional differences between membrane-bound and free ribosomes is reviewed and it is proposed that a major function of ribosome-membrane interaction is to effect a topological segregation of different populations of ribosomes synthesizing different classes of proteins.


1970 ◽  
Vol 48 (6) ◽  
pp. 1235-1241 ◽  
Author(s):  
P. A. Henckel

One of the major protective adaptations of plants in response to drought is their ability to renew proteins during drought and to repair themselves rapidly after drought, i.e. after exposure to a combination of increased temperature plus dehydration. Corn plants subjected to presowing hardening were used as a model of plants with increased drought resistance. Such plants have a more drought resistant ultrastructure and form more high-energy substances, which promote synthetic processes in them. In hardened plants, 15N incorporation into proteins during and after drought proceeds at a faster rate than in control plants. Also, their ribonuclease is less active with respect to messenger RNA (ribonucleic acid), and polysome degradation into ribosomes and subunits occurs more slowly during drought. Polysomes revert to normal after drought faster in hardened than in non-hardened plants. All this explains the greater resistance of plants exposed to presowing hardening.


Sign in / Sign up

Export Citation Format

Share Document