Depletion by preganglionic stimulation and post-stimulus recovery of large dense core vesicles in synaptic boutons of the cat superior cervical ganglion

1990 ◽  
Vol 516 (2) ◽  
pp. 341-344 ◽  
Author(s):  
P. Weldon ◽  
M. Bachoo ◽  
C. Polosa
Author(s):  
J. Quatacker ◽  
W. De Potter

Mucopolysaccharides have been demonstrated biochemically in catecholamine-containing subcellular particles in different rat, cat and ox tissues. As catecholamine-containing granules seem to arise from the Golgi apparatus and some also from the axoplasmic reticulum we examined wether carbohydrate macromolecules could be detected in the small and large dense core vesicles and in structures related to them. To this purpose superior cervical ganglia and irises from rabbit and cat and coeliac ganglia and their axons from dog were subjected to the chromaffin reaction to show the distribution of catecholamine-containing granules. Some material was also embedded in glycolmethacrylate (GMA) and stained with phosphotungstic acid (PTA) at low pH for the detection of carbohydrate macromolecules.The chromaffin reaction in the perikarya reveals mainly large dense core vesicles, but in the axon hillock, the axons and the terminals, the small dense core vesicles are more prominent. In the axons the small granules are sometimes seen inside a reticular network (fig. 1).


2017 ◽  
Vol 28 (26) ◽  
pp. 3870-3880 ◽  
Author(s):  
Blake H. Hummer ◽  
Noah F. de Leeuw ◽  
Christian Burns ◽  
Lan Chen ◽  
Matthew S. Joens ◽  
...  

Large dense core vesicles (LDCVs) mediate the regulated release of neuropeptides and peptide hormones. They form at the trans-Golgi network (TGN), where their soluble content aggregates to form a dense core, but the mechanisms controlling biogenesis are still not completely understood. Recent studies have implicated the peripheral membrane protein HID-1 in neuropeptide sorting and insulin secretion. Using CRISPR/Cas9, we generated HID-1 KO rat neuroendocrine cells, and we show that the absence of HID-1 results in specific defects in peptide hormone and monoamine storage and regulated secretion. Loss of HID-1 causes a reduction in the number of LDCVs and affects their morphology and biochemical properties, due to impaired cargo sorting and dense core formation. HID-1 KO cells also exhibit defects in TGN acidification together with mislocalization of the Golgi-enriched vacuolar H+-ATPase subunit isoform a2. We propose that HID-1 influences early steps in LDCV formation by controlling dense core formation at the TGN.


2000 ◽  
Vol 113 (7) ◽  
pp. 1119-1125 ◽  
Author(s):  
F.A. Meunier ◽  
C. Mattei ◽  
P. Chameau ◽  
G. Lawrence ◽  
C. Colasante ◽  
...  

Trachynilysin, a 159 kDa dimeric protein purified from stonefish (Synanceia trachynis) venom, dramatically increases spontaneous quantal transmitter release at the frog neuromuscular junction, depleting small clear synaptic vesicles, whilst not affecting large dense core vesicles. The basis of this insensitivity of large dense core vesicles exocytosis was examined using a fluorimetric assay to determine whether the toxin could elicit catecholamine release from bovine chromaffin cells. Unlike the case of the motor nerve endings, nanomolar concentrations of trachynilysin evoked sustained Soluble N-ethylmaleimide-sensitive fusion protein Attachment Protein REceptor-dependent exocytosis of large dense core vesicles, but only in the presence of extracellular Ca2+. However, this response to trachynilysin does not rely on Ca2+ influx through voltage-activated Ca2+ channels because the secretion was only slightly affected by blockers of L, N and P/Q types. Instead, trachynilysin elicited a localized increase in intracellular fluorescence monitored with fluo-3/AM, that precisely co-localized with the increase of fluorescence resulting from caffeine-induced release of Ca2+ from intracellular stores. Moreover, depletion of the latter stores inhibited trachynilysin-induced exocytosis. Thus, the observed requirement of external Ca2+ for stimulation of large dense core vesicles exocytosis from chromaffin cells implicates plasma membrane channels that signal efflux of Ca2+ from intracellular stores. This study also suggests that the bases of exocytosis of large dense core vesicles from motor nerve terminals and neuroendocrine cells are distinct.


1993 ◽  
Vol 13 (9) ◽  
pp. 3895-3903 ◽  
Author(s):  
C Walch-Solimena ◽  
K Takei ◽  
KL Marek ◽  
K Midyett ◽  
TC Sudhof ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document