biochemical properties
Recently Published Documents


TOTAL DOCUMENTS

4691
(FIVE YEARS 1109)

H-INDEX

117
(FIVE YEARS 15)

2022 ◽  
Vol 135 ◽  
pp. 108557
Author(s):  
Małgorzata Baćmaga ◽  
Jadwiga Wyszkowska ◽  
Agata Borowik ◽  
Jan Kucharski ◽  
Łukasz Paprocki

2022 ◽  
Vol 10 (1) ◽  
pp. 193
Author(s):  
Hương Giang Lê ◽  
Jung-Mi Kang ◽  
Tuấn Cường Võ ◽  
Won Gi Yoo ◽  
Kon Ho Lee ◽  
...  

Cysteine proteases belonging to the falcipain (FP) family play a pivotal role in the biology of malaria parasites and have been extensively investigated as potential antimalarial drug targets. Three paralogous FP-family cysteine proteases of Plasmodium malariae, termed malapains 2–4 (MP2–4), were identified in PlasmoDB. The three MPs share similar structural properties with the FP-2/FP-3 subfamily enzymes and exhibit a close phylogenetic lineage with vivapains (VXs) and knowpains (KPs), FP orthologues of P. vivax and P. knowlesi. Recombinant MP-2 and MP-4 were produced in a bacterial expression system, and their biochemical properties were characterized. Both recombinant MP-2 and MP-4 showed enzyme activity across a broad range of pH values with an optimum activity at pH 5.0 and relative stability at neutral pHs. Similar to the FP-2/FP-3 subfamily enzymes in other Plasmodium species, recombinant MP-2 and MP-4 effectively hydrolyzed hemoglobin at acidic pHs. They also degraded erythrocyte cytoskeletal proteins, such as spectrin and band 3, at a neutral pH. These results imply that MP-2 and MP-4 are redundant hemoglobinases of P. malariae and may also participate in merozoite egression by degrading erythrocyte cytoskeletal proteins. However, compared with other FP-2/FP-3 enzymes, MP-2 showed a strong preference for arginine at the P2 position. Meanwhile, MP-4 showed a primary preference for leucine at the P2 position but a partial preference for phenylalanine. These different substrate preferences of MPs underscore careful consideration in the design of optimized inhibitors targeting the FP-family cysteine proteases of human malaria parasites.


2022 ◽  
Author(s):  
Melanie Jambeau ◽  
Kevin D. Meyer ◽  
Marian Hruska-Plochan ◽  
Ricardos Tabet ◽  
Chao-Zong Lee ◽  
...  

Hexanucleotide G4C2 repeat expansions in the C9ORF72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Dipeptide repeat proteins (DPRs) generated by translation of repeat-containing RNAs show toxic effects in vivo as well as in vitro and are key targets for therapeutic intervention. We generated human antibodies that bind DPRs with high affinity and specificity. Anti-GA antibodies engaged extra- and intracellular poly-GA and reduced aggregate formation in a poly-GA over-expressing human cell line. However, antibody treatment in human neuronal cultures synthesizing exogenous poly-GA resulted in the formation of large extracellular immune complexes and did not affect accumulation of intracellular poly-GA aggregates. Treatment with antibodies was also shown to directly alter the morphological and biochemical properties of poly-GA and to shift poly-GA/antibody complexes to more rapidly sedimenting ones. These alterations were not observed with poly-GP and have important implications for accurate measurement of poly-GA levels including the need to evaluate all centrifugation fractions and disrupt the interaction between treatment antibodies and poly-GA by denaturation. Targeting poly-GA and poly-GP in two mouse models expressing G4C2 repeats by systemic antibody delivery for up to 16 months was well-tolerated and led to measurable brain penetration of antibodies. Long term treatment with anti-GA antibodies produced improvement in an open field movement test in aged C9ORF72450 mice. However, chronic administration of anti-GA antibodies in AAV-(G4C2)149 mice was associated with increased levels of poly-GA detected by immunoassay and did not significantly reduce poly-GA aggregates or alleviate disease progression in this model.


2022 ◽  
Author(s):  
Valery Semenovich Lukashenko ◽  
Irina Pavlovna Saleeva ◽  
Victor Grigorievich Volik ◽  
Dilaram Yuldashevna Ismailova ◽  
Evgenia Vladimirovna Zhuravchuk

The aim of this research was to study the biochemical properties of a new protein-rich feed additive produced by the short-term intense thermal treatment and subsequent enzymatic hydrolysis of the wastes of poultry slaughter and primary processing (feathers and fluff). It was found that this feather-based fermented feed additive contained high amounts of crude protein (86.52%); and the content of easily digestible low-molecular peptides in the additive was 9% higher compared to fishmeal. The amino acid profiles of the additive and fishmeal were compared. The effectiveness of substituting the additive for fishmeal in the diet of broiler chicks was demonstrated by the in vivoexperiments. The results showed that the digestibility of the dietary nutrients was higher in broilers that were fed the new additive compared to those fed fishmeal, which resulted in higher meat productivity: the average daily weight gains in additive-fed broilers was 3.82% higher (p <0.01) compared to fishmeal-fed control broilers, the dressing was 1.4%higher, the muscle in the carcass was 2.1% higher, and the feed conversion ratio was 3.57%lower. The sensory evaluation scores of the meat and broth were also higher in the additive-fed broilers. Keywords: feedadditive, feather wastes of poultry slaughter, enzymatic hydrolysis, distribution of molecular peptide weights, digestibility, productive performance in broilers


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Jack D. A. Sharpen ◽  
Brendan Dolan ◽  
Elisabeth E. L. Nyström ◽  
George M. H. Birchenough ◽  
Liisa Arike ◽  
...  

AbstractThe colonic mucus layer is organized as a two-layered system providing a physical barrier against pathogens and simultaneously harboring the commensal flora. The factors contributing to the organization of this gel network are not well understood. In this study, the impact of transglutaminase activity on this architecture was analyzed. Here, we show that transglutaminase TGM3 is the major transglutaminase-isoform expressed and synthesized in the colon. Furthermore, intrinsic extracellular transglutaminase activity in the secreted mucus was demonstrated in vitro and ex vivo. Absence of this acyl-transferase activity resulted in faster degradation of the major mucus component the MUC2 mucin and changed the biochemical properties of mucus. Finally, TGM3-deficient mice showed an early increased susceptibility to Dextran Sodium Sulfate-induced colitis. Here, we report that natural isopeptide cross-linking by TGM3 is important for mucus homeostasis and protection of the colon from inflammation, reducing the risk of colitis.


2022 ◽  
Vol 9 ◽  
Author(s):  
Ningning Zhou ◽  
W. P. D. Wass Thilakarathna ◽  
Quan Sophia He ◽  
H. P. Vasantha Rupasinghe

Lignin is identified as a promising candidate in renewable energy and bioproduct manufacturing due to its high abundance, polymeric structure, and biochemical properties of monomers. Thus, emerging opportunities exist in generating high-value small molecules from lignin through depolymerization. This review aims at providing an overview of the major technologies of lignin depolymerization. The feasibility of large-scale implementation of these technologies, including thermal, biological, and chemical depolymerizations, are discussed in relation to potential industrial applications. Lignin as a renewable alternative to petroleum-based chemicals has been well documented. This review attempts to emphasize potential applications of lignin-derived monomers and their derivatives as bioactives in food, natural health product, and pharmaceutical sectors. The critical review of the prospects and challenges of lignin-derived bioproducts reveals that the advancement of research and development is required to explore the applications of depolymerization of lignins to their full potential.


Author(s):  
A. V. Kobelev ◽  
S. V. Klement'ev ◽  
A. S. Sirotkin

We examine the agglutinating ability of five compounds, namely, A1, A2, A3, A4 and BS1, isolated from activated sludge on selective media typical of a number of dominant microbial cultures that contribute to the formation of microbial aggregates. The morphological properties of the isolates and their lectin activity, as well as the physiological and biochemical properties of individual isolates were studied; microorganisms in their composition were identified. We assessed the capacity of the isolates under study to synthesize an exopolysaccharide matrix, as well as the sedimentation of activated sludge under the action of the native solution and culture liquid of the BS1 isolate. Based on their capacity to agglutinate, the BS1 and A2 isolates were selected for further research as producers of extracellular lectins and objects of agglutination, respectively. The biophysiochemical properties and molecular-genetic identification of the BS1 isolate allowed the degree of identity with r. Bacillus to be defined (96.19%); for the A2 isolate, 92.93% identity with p. Shigella and p. Escherichia was determined. To assess the capacity to synthesize a biofilm matrix, the BS1 and A2 isolates were cultivated on an agar nutrient solution using Congo Red dye. According to the obtained results, the isolates are capable of synthesizing an exopolysaccharide matrix, the main component of bacterial biofilms. The research results on the sedimentation of activated sludge induced by the native solution and culture liquid of BS1 showed the following. The sedimentation rate of activated sludge increased significantly at the beginning of the process upon adding a BS1 cell suspension, while the introduction of the native solution of BS1 intensified the process following 5 minutes of contact. The obtained experimental data suggest that the media containing extracellular bacterial lectins can be effectively used as a coagulant (flocculant) for the sedimentation of activated sludge.


2022 ◽  
pp. 088532822110580
Author(s):  
Andrew Baldwin ◽  
Brian W Booth

Tannic Acid (TA) is a naturally occurring antioxidant polyphenol that has gained popularity over the past decade in the field of biomedical research for its unique biochemical properties. Tannic acid, typically extracted from oak tree galls, has been used in many important historical applications. TA is a key component in vegetable tanning of leather, iron gall ink, red wines, and as a traditional medicine to treat a variety of maladies. The basis of TA utility is derived from its many hydroxyl groups and its affinity for forming hydrogen bonds with proteins and other biomolecules. Today, the study of TA has led to the development of many new pharmaceutical and biomedical applications. TA has been shown to reduce inflammation as an antioxidant, act as an antibiotic in common pathogenic bacterium, and induce apoptosis in several cancer types. TA has also displayed antiviral and antifungal activity. At certain concentrations, TA can be used to treat gastrointestinal disorders such as hemorrhoids and diarrhea, severe burns, and protect against neurodegenerative diseases. TA has also been utilized in biomaterials research as a natural crosslinking agent to improve mechanical properties of natural and synthetic hydrogels and polymers, while also imparting anti-inflammatory, antibacterial, and anticancer activity to the materials. TA has also been used to develop thin film coatings and nanoparticles for drug delivery. In all, TA is fascinating molecule with a wide variety of potential uses in pharmaceuticals, biomaterials applications, and drug delivery strategies.


Sign in / Sign up

Export Citation Format

Share Document