Bivalent effects of electrical stimulation applied to the central nervous system upon photic evoked potentials in the visual cortex of rabbits

1987 ◽  
Vol 66 (5) ◽  
pp. S55-S56 ◽  
1968 ◽  
Vol 29 (1) ◽  
pp. 20-37 ◽  
Author(s):  
Raoul DiPerri ◽  
Anant Dravid ◽  
Arlene Schweigerdt ◽  
Harold E. Himwich

Author(s):  
Gordon M. Shepherd ◽  
Michele Migliore ◽  
Francesco Cavarretta

The olfactory bulb is the site of the first synaptic processing of the olfactory input from the nose. It is present in all vertebrates (except cetaceans) and a the analogous antennal lobe in most invertebrates. With its sharply demarcated cell types and histological layers, and some well-studied synaptic interactions, it is one of the first and clearest examples of the microcircuit concept in the central nervous system. The olfactory bulb microcircuit receives the information in the sensory domain and transforms it into information in the neural domain. Traditionally, it has been considered analogous to the retina in processing its sensory input, but that has been replaced by the view that it is more similar to the thalamus or primary visual cortex in processing its multidimensional input. This chapter describes the main synaptic connections and functional operations and how they provide the output to the olfactory cortex


2005 ◽  
Vol 328 (2) ◽  
pp. 177-186 ◽  
Author(s):  
Alim-Louis Benabid ◽  
Bradley Wallace ◽  
John Mitrofanis ◽  
Celine Xia ◽  
Brigitte Piallat ◽  
...  

2021 ◽  
Vol 10 (18) ◽  
pp. 4196
Author(s):  
Edyta Dziadkowiak ◽  
Agata Sebastian ◽  
Malgorzata Wieczorek ◽  
Anna Pokryszko-Dragan ◽  
Marta Madej ◽  
...  

Visual evoked potentials (VEP) are changes in potentials that arise in the central nervous system. In the interpretation of the VEP test results, it is assumed that the elongation of the latency time is caused by the demyelination of the nerve fibers, and the axon damage is responsible for the decrease in the amplitude. The observed VEP deviations are not specific for specific diseases, but indicate disturbances in visual conductivity. VEP may play a diagnostic role in the early detection of visual involvement. The aim of the study was the functioning of visual pathway assessment on the basis of visual evoked potentials (VEP) examination, in patients with primary Sjögren’s Syndrome (pSS), without focal symptoms of central nervous system disorder. The effect of disease activity, as assessed by clinical parameters and antibody levels (anti-Ro52, SSA, and SSB), on the central nervous system was also evaluated. Thirty-two consecutive patient with pSS (31 females, 1 male) were included in the study. VEP was performed at baseline, and after 6 (T6) years. Their results were compared longitudinally between the baseline and T6, depending on the duration of the disease and treatment. The immunological activity of pSS was also analyzed. The group of patients showed a significant prolongation of the P100 implicit time (105.5 ± 5.1 vs. 100.6 ± 3.9; p = 0.000) and a significant higher the P100-N145 amplitude (12.3 ± 4.1 vs. 9.4 ± 3.0; p = 0.000). Abnormalities in electrophysiological parameters of VEP at baseline correlated with presentation of anti-Ro52 antibodies and aching joints. At baseline, the P100 implicit time was shorter for the patients with pSS than for those at T6 (105.50 ± 5.1 vs. 109.37 ± 5.67; p = 0.002). pSS patients without CNS involvement presented with dysfunction of visual pathway, as revealed by VEP abnormalities. Relationships were found between VEP parameters and with present of anti-Ro52 antibodies and aching joints. VEP may be a useful method for assessment and monitoring of subclinical visual deficit in the course of pSS.


1958 ◽  
Vol 194 (2) ◽  
pp. 427-432 ◽  
Author(s):  
Harold C. Nielson ◽  
Robert W. Doty ◽  
Lester T. Rutledge

Reports of others that animals will seek electrical stimulation of certain regions of the central nervous system are confirmed. A method is presented whereby these ‘motivational’ aspects of central stimulation can be analyzed and shown to be capable of change by training and to have a different threshold from the animal's ‘perception’ of this stimulation. Cats were trained to press a bar to receive pellets of meat. When each bar-press was accompanied by stimulation through electrodes implanted in the caudate nucleus or anterior hypothalamus, the animals continued pressing. If the press was paired with stimulation of the septal or habenular regions, pressing was abolished. Foot-shock paired with pressing also produced avoidance but pairing with a startling buzzer did not. Caudatal stimulation of 0.2 ma, 50/sec., 2-msec. pulses, was adequate as conditional stimulus to establish conditioned foreleg flexions to avoid an electric shock. Subsequent to the latter training two animals would no longer press the bar if pressing resulted in caudatal stimulation. Other cats would press as often as 1000 times in a 20-minute period to obtain caudatal stimulation if it were allowed at rapid rates and intensities five times that required to evoke conditioned flexion reflexes. The evidence suggests that avidity develops for stimulation of certain neural structures only if the stimulus is adequate to initiate some form of excessive, seizure-like activity.


2008 ◽  
Vol 31 (2) ◽  
pp. 217-218
Author(s):  
Giuseppe Trautteur ◽  
Edoardo Datteri ◽  
Matteo Santoro

AbstractNijhawan argues convincingly that predictive mechanisms are pervasive in the central nervous system (CNS). However, scientific understanding of visual prediction requires one to formulate empirically testable neurophysiological models. The author's suggestions in this direction are to be evaluated on the basis of more realistic experimental methodologies and more plausible assumptions on the hierarchical character of the human visual cortex.


Sign in / Sign up

Export Citation Format

Share Document