olfactory input
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 22)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Janet K. Bester‐Meredith ◽  
Jennifer N. Burns ◽  
Minh N. Dang ◽  
Alexandrea M. Garcia ◽  
Grace E. Mammarella ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Harrison Tuckman ◽  
Mainak Patel ◽  
Hong Lei

Air turbulence ensures that in a natural environment insects tend to encounter odor stimuli in a pulsatile fashion. The frequency and duration of odor pulses varies with distance from the source, and hence successful mid-flight odor tracking requires resolution of spatiotemporal pulse dynamics. This requires both olfactory and mechanosensory input (from wind speed), a form of sensory integration observed within the antennal lobe (AL). In this work, we employ a model of the moth AL to study the effect of mechanosensory input on AL responses to pulsatile stimuli; in particular, we examine the ability of model neurons to: (1) encode the temporal length of a stimulus pulse; (2) resolve the temporal dynamics of a high frequency train of brief stimulus pulses. We find that AL glomeruli receiving olfactory input are adept at encoding the temporal length of a stimulus pulse but less effective at tracking the temporal dynamics of a pulse train, while glomeruli receiving mechanosensory input but little olfactory input can efficiently track the temporal dynamics of high frequency pulse delivery but poorly encode the duration of an individual pulse. Furthermore, we show that stronger intrinsic small-conductance calcium-dependent potassium (SK) currents tend to skew cells toward being better trackers of pulse frequency, while weaker SK currents tend to entail better encoding of the temporal length of individual pulses. We speculate a possible functional division of labor within the AL, wherein, for a particular odor, glomeruli receiving strong olfactory input exhibit prolonged spiking responses that facilitate detailed discrimination of odor features, while glomeruli receiving mechanosensory input (but little olfactory input) serve to resolve the temporal dynamics of brief, pulsatile odor encounters. Finally, we discuss how this hypothesis extends to explaining the functional significance of intraglomerular variability in observed phase II response patterns of AL neurons.


2021 ◽  
Author(s):  
Sebastian H. Bitzenhofer ◽  
Elena A. Westeinde ◽  
Han-Xiong Bear Zhang ◽  
Jeffry S. Isaacson

SummaryOlfactory information is encoded in lateral entorhinal cortex (LEC) by two classes of layer 2 (L2) principal neurons: fan and pyramidal cells. However, the functional properties of L2 neurons are unclear. Here, we show in awake mice that L2 cells respond rapidly to odors during single sniffs and that LEC is essential for discrimination of odor identity and intensity. Population analyses of L2 ensembles reveals that while rate coding distinguishes odor identity, firing rates are weakly concentration-dependent and changes in spike timing represent odor intensity. L2 principal cells differ in afferent olfactory input and connectivity with local inhibitory circuits and the relative timing of pyramidal and fan cell spikes underlies odor intensity coding. Downstream, intensity is encoded purely by spike timing in hippocampal CA1. Together, these results reveal the unique processing of odor information by parallel LEC subcircuits and highlight the importance of temporal coding in higher olfactory areas.


2021 ◽  
Vol 22 (16) ◽  
pp. 8802
Author(s):  
Anastasia N. Vaganova ◽  
Ramilya Z. Murtazina ◽  
Taisiia S. Shemyakova ◽  
Andrey D. Prjibelski ◽  
Nataliia V. Katolikova ◽  
...  

Trace amine-associated receptors (TAAR) recognize organic compounds, including primary, secondary, and tertiary amines. The TAAR5 receptor is known to be involved in the olfactory sensing of innate socially relevant odors encoded by volatile amines. However, emerging data point to the involvement of TAAR5 in brain functions, particularly in the emotional behaviors mediated by the limbic system which suggests its potential contribution to the pathogenesis of neuropsychiatric diseases. TAAR5 expression was explored in datasets available in the Gene Expression Omnibus, Allen Brain Atlas, and Human Protein Atlas databases. Transcriptomic data demonstrate ubiquitous low TAAR5 expression in the cortical and limbic brain areas, the amygdala and the hippocampus, the nucleus accumbens, the thalamus, the hypothalamus, the basal ganglia, the cerebellum, the substantia nigra, and the white matter. Altered TAAR5 expression is identified in Down syndrome, major depressive disorder, or HIV-associated encephalitis. Taken together, these data indicate that TAAR5 in humans is expressed not only in the olfactory system but also in certain brain structures, including the limbic regions receiving olfactory input and involved in critical brain functions. Thus, TAAR5 can potentially be involved in the pathogenesis of brain disorders and represents a valuable novel target for neuropsychopharmacology.


2021 ◽  
pp. 1-12
Author(s):  
Georg F. Striedter ◽  
R. Glenn Northcutt

Comparative neurobiologists have long wondered when and how the dorsal pallium (e.g., mammalian neocortex) evolved. For the last 50 years, the most widely accepted answer has been that this structure was already present in the earliest vertebrates and, therefore, homologous between the major vertebrate lineages. One challenge for this hypothesis is that the olfactory bulbs project throughout most of the pallium in the most basal vertebrate lineages (notably lampreys, hagfishes, and lungfishes) but do not project to the putative dorsal pallia in teleosts, cartilaginous fishes, and amniotes (i.e., reptiles, birds, and mammals). To make sense of these data, one may hypothesize that a dorsal pallium existed in the earliest vertebrates and received extensive olfactory input, which was subsequently lost in several lineages. However, the dorsal pallium is notoriously difficult to delineate in many vertebrates, and its homology between the various lineages is often based on little more than its topology. Therefore, we suspect that dorsal pallia evolved independently in teleosts, cartilaginous fishes, and amniotes. We further hypothesize that the emergence of these dorsal pallia was accompanied by the phylogenetic restriction of olfactory projections to the pallium and the expansion of inputs from other sensory modalities. We do not deny that the earliest vertebrates may have possessed nonolfactory sensory inputs to some parts of the pallium, but such projections alone do not define a dorsal pallium.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
E. M. Postma ◽  
P. A. M. Smeets ◽  
W. M. Boek ◽  
S. Boesveldt

AbstractOlfactory loss (OL) affects up to 20% of the general population and is related to changes in olfaction-related brain regions. This study investigated the effect of etiology and duration of OL on gray matter volume (GMV) of these regions in 257 patients. Voxel-based morphometry was applied to measure GMV in brain regions of interest to test the effects of etiology and duration on regional GMV and the relation between olfactory function and regional GMV. Etiology of OL had a significant effect on GMV in clusters representing the gyrus rectus and orbitofrontal cortex (OFC), bilaterally. Patients with congenital anosmia had reduced GMV in the gyrus rectus and an increased OFC volume compared to patients with acquired OL. There was a significant association between volume of the left OFC and olfactory function. This implies that changes in GMV in patients with acquired OL are mainly reflected in the OFC and depend on olfactory function. Morphology of olfactory areas in the brain therefore seems to relate to olfactory function and the subsequent degree of exposure to olfactory input in patients with acquired OL. Differences in GMV in congenital anosmia are most likely due to the fact that patients were never able to smell.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Philipp Schlegel ◽  
Alexander Shakeel Bates ◽  
Tomke Stürner ◽  
Sridhar R Jagannathan ◽  
Nikolas Drummond ◽  
...  

The hemibrain connectome provides large scale connectivity and morphology information for the majority of the central brain of Drosophila melanogaster. Using this data set, we provide a complete description of the Drosophila olfactory system, covering all first, second and lateral horn-associated third-order neurons. We develop a generally applicable strategy to extract information flow and layered organisation from connectome graphs, mapping olfactory input to descending interneurons. This identifies a range of motifs including highly lateralised circuits in the antennal lobe and patterns of convergence downstream of the mushroom body and lateral horn. Leveraging a second data set we provide a first quantitative assessment of inter- versus intra-individual stereotypy. Comparing neurons across two brains (three hemispheres) reveals striking similarity in neuronal morphology across brains. Connectivity correlates with morphology and neurons of the same morphological type show similar connection variability within the same brain as across two brains.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yurina Higa ◽  
Hideki Kashiwadani ◽  
Mitsutaka Sugimura ◽  
Tomoyuki Kuwaki

AbstractLinalool odor exposure induces an analgesic effect in mice. This effect disappeared in the anosmic model mice, indicating that olfactory input evoked by linalool odor triggered this effect. Furthermore, hypothalamic orexinergic neurons play a pivotal role in this effect. However, the neuronal circuit mechanisms underlying this effect have not been fully addressed. In this study, we focused on the descending orexinergic projection to the spinal cord and examined whether this pathway contributes to the effect. We assessed the effect of intrathecal administration of orexin receptor antagonists on linalool odor-induced analgesia in the tail capsaicin test. We found that the selective orexin type 1 receptor antagonist, but not the selective orexin type 2 receptor antagonist, prevented the odor-induced analgesic effect. Furthermore, immunohistochemical analyses of c-Fos expression induced by the capsaicin test revealed that neuronal activity of spinal cord neurons was suppressed by linalool odor exposure, which was prevented by intrathecal administration of the orexin 1 receptor antagonist. These results indicate that linalool odor exposure drives the orexinergic descending pathway and suppresses nociceptive information flow at the spinal level.


2021 ◽  
Author(s):  
Pierre Junca ◽  
Molly Stanley ◽  
Pierre-Yves Musso ◽  
Michael D Gordon

An animal's sensory percepts are not raw representations of the outside world. Rather, they are constructs influenced by many factors including the species, past experiences, and internal states. One source of perceptual variability that has fascinated researchers for decades is the effect of losing one sensory modality on the performance of another. Typically, dysfunction of one sense has been associated with elevated function of others, creating a type of sensory homeostasis. For example, people with vision loss have been reported to demonstrate enhanced tactile and auditory functions, and deafness has been associated with heightened attention to visual inputs for communication. By contrast, smell and taste - the two chemosensory modalities - are so intrinsically linked in their contributions to flavor that loss of smell is often anecdotally reported as leading to deficiencies in taste. However, human studies specifically examining taste are mixed and generally do not support this widely-held belief, and data from animal models is largely lacking. Here, we examine the impact of olfactory dysfunction on taste sensitivity in Drosophila melanogaster. We find that partial loss of olfactory input (hyposmia) dramatically enhances flies' sensitivity to both appetitive (sugar, low salt) and aversive (bitter, high salt) tastes. This taste enhancement is starvation-independent and occurs following suppression of either first- or second-order olfactory neurons. Moreover, optogenetically increasing olfactory inputs reduces taste sensitivity. Finally, we observed that taste enhancement is not encoded in the activity of peripheral gustatory sensory neurons, but is associated with elevated sugar responses in protocerebrum anterior medial (PAM) dopaminergic neurons of the mushroom bodies. These results suggest a level of homeostatic control over chemosensation, where flies compensate for lack of olfactory input by increasing the salience of taste information.


2021 ◽  
Author(s):  
Samuel K. H. Sy ◽  
Danny C. W. Chan ◽  
Hei-Ming Lai ◽  
Zhongqi Li ◽  
Kenneth K.Y. Wong ◽  
...  

SummaryOptimizing navigational strategies in nature requires the detection and processing of survival-relevant cues. Our understanding of how animals utilise parallel inputs from paired sensory organs for this purpose and the underlying neural circuit mechanisms remain limited. Here we developed microfluidics-based behavioral and brainwide imaging platforms to study the neural integration of bilateral olfactory inputs and chemosensory avoidance in larval zebrafish. We show that larval zebrafish efficiently escape from cadaverine-carrying streams using undirected large turns, where both angular velocity and adaptation of turn duration exhibit bilateral olfactory input-dependence. In contrast, concomitant swim bout frequency modulation (i.e., klinokinesis) only requires unilateral input. Throughout the olfactory processing pathways, a distributed neural representation with a wide spectrum of ipsilateral-contralateral stimulus selectivity is maintained. Nonlinear sensory information gain with bilateral signal convergence is especially prominent in neurons weakly encoding unilateral cadaverine stimulus, and associated with stronger activation of sensorimotor neurons in the downstream brain regions. Collectively, these results provide insights into how the vertebrate model sums parallel input signals to guide navigational behavior.


Sign in / Sign up

Export Citation Format

Share Document