A unified analysis of various problems relating to circular holes with edge cracks

1987 ◽  
Vol 27 (5) ◽  
pp. 571-591 ◽  
Author(s):  
M. Isida ◽  
S. Nemat-Nasser
Keyword(s):  
1978 ◽  
Vol 100 (2) ◽  
pp. 356-362 ◽  
Author(s):  
J. S. Porowski ◽  
W. J. O’Donnell

Methods for performing finite element stress analysis of perforated plates under pressure and complex thermal loading conditions are described. The concept of the equivalent solid material of anisotropic properties is employed to define the elasticity matrices to be used for axisymmetric analysis of plates containing triangular and square patterns of circular holes. Generalized plane strain effective elastic constants are used for better approximation of the overall plate behavior. New methods and curves for obtaining local ligament stresses from the nominal stresses in the equivalent solid material are given.


1988 ◽  
Vol 190 ◽  
pp. 409-425 ◽  
Author(s):  
J. P. Dear ◽  
J. E. Field

This paper describes a method for examining the collapse of arrays of cavities using high-speed photography and the results show a variety of different collapse mechanisms. A two-dimensional impact geometry is used to enable processes occurring inside the cavities such as jet motion, as well as the movement of the liquid around the cavities, to be observed. The cavity arrangements are produced by first casting water/gelatine sheets and then forming circular holes, or other desired shapes, in the gelatine layer. The gelatine layer is placed between two thick glass blocks and the array of cavities is then collapsed by a shock wave, visualized using schlieren photography and produced from an impacting projectile. A major advantage of the technique is that cavity size, shape, spacing and number can be accurately controlled. Furthermore, the shape of the shock wave and also its orientation relative to the cavities can be varied. The results are compared with proposed interaction mechanisms for the collapse of pairs of cavities, rows of cavities and clusters of cavities. Shocks of kbar (0.1 GPa) strength produced jets of c. 400 m s−1 velocity in millimetre-sized cavities. In closely-spaced cavities multiple jets were observed. With cavity clusters, the collapse proceeded step by step with pressure waves from one collapsed row then collapsing the next row of cavities. With some geometries this leads to pressure amplification. Jet production by the shock collapse of cavities is suggested as a major mechanism for cavitation damage.


2013 ◽  
Vol 791-793 ◽  
pp. 1318-1321
Author(s):  
Lei Meng

By means of measuring creep curves, microstructure observation and FEM analysis of the stress field near the hole; an investigation has been made into the influence of the defects on creep behaviors and microstructure evolution of single crystal nickel-based superalloys. Results show that the creep lifetimes and plasticity of the single crystal nickel based superalloys are obviously decreased by microstructure defects. During high temperature creep, the stress isoline near the holes region displays the feature of the acetabuliform distribution, and possesses the bigger stress value at 45° angle direction relative to the applied stress axis. That results in the γ phase transformed into the rafted structure at 45° angle direction relative to the applied stress axis, and the circular holes defects are elongated into the ellipse in shape along the direction parallel to the applied stress axis.


2013 ◽  
Vol 394 ◽  
pp. 134-139 ◽  
Author(s):  
Teik Cheng Lim

Auxetic materials are solids that possess negative Poissons ratio. Although rare, such materials do occur naturally and also have been artificially produced. Due to their unique properties, auxetic materials have been extensively investigated for load bearing applications including in biomedical engineering and aircraft structures. This paper considers the effect of Poissons ratio on the stress concentration factors on rods with hyperbolic groove and large thin plates with circular holes and rigid inclusions. Results reveal that the use of auxetic materials is useful for reducing stress concentration in the maximum circumferential stress of the rods with grooves, and in plates with circular holes and rigid inclusions. However, the use of auxetic materials increases the stress concentration in the axial direction of the rod. Therefore a procedure to accurately select and/or design materials with precise negative Poissons ratio for optimal design is suggested for future work.


Sign in / Sign up

Export Citation Format

Share Document