stress concentration factors
Recently Published Documents


TOTAL DOCUMENTS

636
(FIVE YEARS 95)

H-INDEX

29
(FIVE YEARS 4)

ACTA IMEKO ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 177
Author(s):  
Lorenzo Capponi ◽  
Tommaso Tocci ◽  
Mariapaola D'Imperio ◽  
Syed Haider Jawad Abidi ◽  
Massimiliano Scaccia ◽  
...  

<p>Experimental procedures are often involved in the numerical models validation. To define the behaviour of a structure, its underlying dynamics and stress distributions are generally investigated. In this research, a multi-instrumental and multi-spectral method is proposed in order to validate the numerical model of the Inspection Robot mounted on the new San Giorgio's Bridge on the Polcevera river. An infrared thermoelasticity-based approach is used to measure stress-concentration factors and, additionally, an innovative methodology is implemented to define the natural frequencies of the Robot Inspection structure, based on the detection of ArUco fiducial markers. Established impact hammer procedure is also performed for the validation of the results.</p>


Author(s):  
Elvis Santander ◽  
Bianca Pinheiro ◽  
Carlos Magluta ◽  
Ney Roitman

Abstract In the development of oil and gas fields, subsea pipes are used in various applications, like pipelines and risers. During operation, risers can be subjected to accidents, such as collisions with other risers, anchors, rocks, or any heavy equipment or objects, which may lead to mechanical damages. These mechanical damages are commonly characterized as dents. The objective of this work is to study the effect of the introduction of plain dents on the fatigue life of rigid risers under fully reversed bending with the conduction of resonant bending tests. A three-dimensional finite element model was developed to estimate the stress concentration on dented risers under bending. Numerical simulations and experimental tests were carried out to evaluate the resulting stress concentration factors (SCFs). These SCFs can be used in the prediction of the remaining fatigue life of dented rigid risers.


2021 ◽  
Author(s):  
Finn Renken ◽  
Rüdiger Ulrich Franz von Bock und Polach ◽  
Jan Schubnell ◽  
Matthias Jung ◽  
Markus Oswald ◽  
...  

Commonly, to evaluate the influence of the local weld geometry in fatigue test, small-scale specimens are used, assuming those represent a longer weld adequately. In this study, a comparison between short specimens and a long weld is performed. A method is developed for the statistical evaluation of weld toe radii and angles, stress concentration factors and weld quality classes. The results show a strong sampling rate dependence and lower ISO 5817:2014 weld quality results for higher sampling rates. Comparable results between short specimens and a long weld can be achieved using modal values of the parameters assuming a lognormal distribution.


Author(s):  
Glenn Sinclair ◽  
Ajay A Kardak

Abstract When stress concentration factors are not available in handbooks, finite element analysis has become the predominant method for determining their values. For such determinations, there is a need to know if they have sufficient accuracy. Tuned Test Problems can provide a way of assessing the accuracy of stress concentration factors found with finite elements. Here we offer a means of constructing such test problems for stress concentrations within boundaries that have local constant radii of curvature. These problems are tuned to their originating applications by sharing the same global geometries and having slightly higher peak stresses. They also have exact solutions, thereby enabling a precise determination of the errors incurred in their finite element analysis.


2021 ◽  
pp. 136943322110499
Author(s):  
Feleb Matti ◽  
Fidelis Mashiri

This paper investigates the behaviour of square hollow section (SHS) T-joints under static axial tension for the determination of stress concentration factors (SCFs) at the hot spot locations. Five empty and corresponding concrete-filled SHS-SHS T-joint connections were tested experimentally and numerically. The experimental investigation was carried out by attaching strain gauges onto the SHS-SHS T-joint specimens. The numerical study was then conducted by developing three-dimensional finite element (FE) T-joint models using ABAQUS finite element analysis software for capturing the distribution of the SCFs at the hot spot locations. The results showed that there is a good agreement between the experimental and numerical SCFs. A series of formulae for the prediction of SCF in concrete-filled SHS T-joints under tension were proposed, and good agreement was achieved between the maximum SCFs in SHS T-joints calculated from FE T-joint models and those from the predicted formulae.


2021 ◽  
pp. 635-642
Author(s):  
J. Buitrago ◽  
C.A. Haymes ◽  
L.M. Connelly ◽  
T.M. Hsu

Structures ◽  
2021 ◽  
Vol 33 ◽  
pp. 4743-4765
Author(s):  
Esmaeil Zavvar ◽  
Alireza Sadat Hosseini ◽  
Mohammad Ali Lotfollahi-Yaghin

Sign in / Sign up

Export Citation Format

Share Document